List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2598476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological invasions and climate change amplify each other's effects on dryland degradation. Global Change Biology, 2022, 28, 285-295.	9.5	23
2	Inhalation risks of wind-blown dust from biosolid-applied agricultural lands: Are they enriched with microplastics and PFAS?. Current Opinion in Environmental Science and Health, 2022, 25, 100309.	4.1	17
3	Microplastics retained in stormwater control measures: Where do they come from and where do they go?. Water Research, 2022, 210, 118008.	11.3	29
4	Mobility of polypropylene microplastics in stormwater biofilters under freeze-thaw cycles. Journal of Hazardous Materials Letters, 2022, 3, 100048.	3.6	7
5	Woody plant encroachment of grassland and the reversibility of shrub dominance: Erosion, fire, and feedback processes. Ecosphere, 2022, 13, .	2.2	10
6	Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sensing of Environment, 2021, 253, 112223.	11.0	62
7	Fire changes the spatial pattern and dynamics of soil nitrogen (N) and δ15N at a grassland-shrubland ecotone. Journal of Arid Environments, 2021, 186, 104422.	2.4	2
8	Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling. Environmental Pollution, 2021, 274, 116552.	7.5	189
9	Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics. Renewable and Sustainable Energy Reviews, 2021, 151, 111610.	16.4	11
10	Generation, Resuspension, and Transport of Particulate Matter From Biocharâ€Amended Soils: A Potential Health Risk. GeoHealth, 2020, 4, e2020GH000311.	4.0	8
11	Size-dependent biochar breaking under compaction: Implications on clogging and pathogen removal in biofilters. Environmental Pollution, 2020, 266, 115195.	7.5	21
12	Effects of Revegetation on Soil Physical and Chemical Properties in Solar Photovoltaic Infrastructure. Frontiers in Environmental Science, 2020, 8, .	3.3	50
13	Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Science of the Total Environment, 2020, 724, 138353.	8.0	23
14	Reframing the Competition for Land between Food and Energy Production in Indonesia. Social and Ecological Interactions in the Galapagos Islands, 2020, , 241-260.	0.4	1
15	Compaction conditions affect the capacity of biochar-amended sand filters to treat road runoff. Science of the Total Environment, 2020, 735, 139180.	8.0	29
16	Post-fire Redistribution of Soil Carbon and Nitrogen at a Grassland–Shrubland Ecotone. Ecosystems, 2019, 22, 174-188.	3.4	26
17	A combined grazing and fire management may reverse woody shrub encroachment in desert grasslands. Landscape Ecology, 2019, 34, 2017-2031.	4.2	10
18	Biochar increases nitrate removal capacity of woodchip biofilters during high-intensity rainfall. Water Research, 2019, 165, 115008.	11.3	42

#	Article	IF	CITATIONS
19	Convergent vegetation fog and dew water use in the Namib Desert. Ecohydrology, 2019, 12, e2130.	2.4	37
20	Fire changes the spatial distribution and sources of soil organic carbon in a grassland-shrubland transition zone. Plant and Soil, 2019, 435, 309-321.	3.7	10
21	On the development of a magnetic susceptibilityâ€based tracer for aeolian sediment transport research. Earth Surface Processes and Landforms, 2019, 44, 672-678.	2.5	9
22	Ecohydrological Implications of Aeolian Processes in Drylands. , 2019, , 199-238.		2
23	Dynamic effects of biochar concentration and particle size on hydraulic properties of sand. Land Degradation and Development, 2018, 29, 884-893.	3.9	59
24	Interactions among hydrological-aeolian processes and vegetation determine grain-size distribution of sediments in a semi-arid coppice dune (nebkha) system. Journal of Arid Environments, 2018, 154, 24-33.	2.4	20
25	Quantifying Postfire Aeolian Sediment Transport Using Rare Earth Element Tracers. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 288-299.	3.0	36
26	Aeolian contamination of fruits by enteric pathogens: an unexplored paradigm. Current Opinion in Food Science, 2018, 19, 138-144.	8.0	25
27	Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands. Ecohydrology, 2018, 11, e1986.	2.4	25
28	Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Desert surfaces. Geoderma, 2017, 293, 19-25.	5.1	16
29	Ecohydrological interactions within "fairy circles―in the Namib Desert: Revisiting the selfâ€organization hypothesis. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 405-414.	3.0	38
30	Tracer techniques in aeolian research: Approaches, applications, and challenges. Earth-Science Reviews, 2017, 170, 1-16.	9.1	28
31	Changes in spatial variance during a grassland to shrubland state transition. Journal of Ecology, 2017, 105, 750-760.	4.0	41
32	Land Degradation and Environmental Change. , 2016, , 219-227.		12
33	Potential of grass invasions in desert shrublands to create novel ecosystem states under variable climate. Ecohydrology, 2016, 9, 1496-1506.	2.4	27
34	Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential. Scientific Reports, 2016, 6, 35984.	3.3	39
35	Colocation opportunities for large solar infrastructures and agriculture in drylands. Applied Energy, 2016, 165, 383-392.	10.1	125
36	Dynamic interactions of ecohydrological and biogeochemical processes in waterâ€limited systems. Ecosphere, 2015, 6, 1-27.	2.2	58

#	Article	IF	CITATIONS
37	Partner crop plants with solar facilities. Nature, 2015, 524, 161-161.	27.8	5
38	Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 2014, 29, 766-779.	16.4	429
39	Tradeoffs and Synergies between Biofuel Production and Large Solar Infrastructure in Deserts. Environmental Science & Technology, 2014, 48, 3021-3030.	10.0	50
40	Vegetation Change in the Southwestern USA: Patterns and Processes. , 2014, , 289-313.		7
41	Global desertification: Drivers and feedbacks. Advances in Water Resources, 2013, 51, 326-344.	3.8	656
42	Phenology-based, remote sensing of post-burn disturbance windows in rangelands. Ecological Indicators, 2013, 30, 35-44.	6.3	27
43	Field evidence for differences in post-fire aeolian transport related to vegetation type in semi-arid grasslands. Aeolian Research, 2012, 7, 3-10.	2.7	29
44	Quantifying soil surface change in degraded drylands: Shrub encroachment and effects of fire and vegetation removal in a desert grassland. Journal of Geophysical Research, 2012, 117, .	3.3	39
45	Invasion of shrublands by exotic grasses: ecohydrological consequences in cold versus warm deserts. Ecohydrology, 2012, 5, 160-173.	2.4	72
46	Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology, 2012, 5, 174-183.	2.4	110
47	AEOLIAN PROCESSES AND THE BIOSPHERE. Reviews of Geophysics, 2011, 49, .	23.0	230
48	The ecology of dust. Frontiers in Ecology and the Environment, 2010, 8, 423-430.	4.0	248
49	Interactions Between Soil Erosion Processes and Fires: Implications for the Dynamics of Fertility Islands. Rangeland Ecology and Management, 2010, 63, 267-274.	2.3	35
50	Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology, 2010, 116, 236-245.	2.6	306
51	Post-Fire Resource Redistribution in Desert Grasslands: A Possible Negative Feedback on Land Degradation. Ecosystems, 2009, 12, 434-444.	3.4	104
52	Post-fire resource redistribution and fertility island dynamics in shrub encroached desert grasslands: a modeling approach. Landscape Ecology, 2009, 24, 325-335.	4.2	49
53	Can biological invasions induce desertification?. New Phytologist, 2009, 181, 512-515.	7.3	40
54	The effect of fire-induced soil hydrophobicity on wind erosion in a semiarid grassland: Experimental observations and theoretical framework. Geomorphology, 2009, 105, 80-86.	2.6	30

#	Article	lF	CITATIONS
55	Land degradation in the Thar Desert. Frontiers in Ecology and the Environment, 2009, 7, 517-518.	4.0	12
56	Form and function of grass ring patterns in arid grasslands: the role of abiotic controls. Oecologia, 2008, 158, 545-555.	2.0	61
57	Dustâ€rainfall feedbacks in the West African Sahel. Water Resources Research, 2008, 44, .	4.2	57
58	Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophysical Research Letters, 2007, 34, .	4.0	90
59	Feedbacks between fires and wind erosion in heterogeneous arid lands. Journal of Geophysical Research, 2007, 112, .	3.3	61
60	Enhancement of wind erosion by fire-induced water repellency. Water Resources Research, 2006, 42, .	4.2	57
61	On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology, 2006, 53, 597-609.	3.1	119
62	A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 2005, 32, .	4.0	68
63	On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	120