
Magdalena Rowinska-Zyrek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2598091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc Homeostasis at the Bacteria/Host Interface—From Coordination Chemistry to Nutritional Immunity. Chemistry - A European Journal, 2016, 22, 15992-16010.	1.7	66
2	Specific metal ion binding sites in unstructured regions of proteins. Coordination Chemistry Reviews, 2013, 257, 2625-2638.	9.5	63
3	The –Cys–Cys– motif in Helicobacter pylori's Hpn and HspA proteins is an essential anchoring site for metal ions. Dalton Transactions, 2011, 40, 5604.	1.6	52
4	Specific poly-histidyl and poly-cysteil protein sites involved in Ni2+ homeostasis in Helicobacter pylori. Impact of Bi3+ ions on Ni2+ binding to proteins. Structural and thermodynamic aspects. Coordination Chemistry Reviews, 2012, 256, 133-148.	9.5	50
5	His-rich sequences – is plagiarism from nature a good idea?. New Journal of Chemistry, 2013, 37, 58-70.	1.4	50
6	Neurodegenerative diseases – Understanding their molecular bases and progress in the development of potential treatments. Coordination Chemistry Reviews, 2015, 284, 298-312.	9.5	48
7	The C terminus of HspA—a potential target for native Ni(ii) and Bi(iii) anti-ulcer drugs. Dalton Transactions, 2010, 39, 5814.	1.6	37
8	Metal Binding Ability of Cysteine-Rich Peptide Domain of ZIP13 Zn ²⁺ lons Transporter. Inorganic Chemistry, 2011, 50, 6135-6145.	1.9	33
9	Unexpected impact of the number of glutamine residues on metal complex stability. Metallomics, 2013, 5, 214.	1.0	33
10	Antimicrobial peptide–metal ion interactions – a potential way of activity enhancement. New Journal of Chemistry, 2018, 42, 7560-7568.	1.4	32
11	Coordination of Zn2+ and Cu2+ to the membrane disrupting fragment of amylin. Dalton Transactions, 2016, 45, 8099-8106.	1.6	30
12	Zinc binding sites in Pra1, a zincophore from Candida albicans. Dalton Transactions, 2017, 46, 13695-13703.	1.6	29
13	The Coordination of Ni ^{II} and Cu ^{II} lons to the Polyhistidyl Motif of Hpn Protein: Is It as Strong as We Think?. Chemistry - A European Journal, 2012, 18, 11088-11099.	1.7	28
14	Ni ²⁺ chemistry in pathogens – a possible target for eradication. Dalton Transactions, 2014, 43, 8976-8989.	1.6	28
15	Heteronuclear and Homonuclear Cu ²⁺ and Zn ²⁺ Complexes with Multihistidine Peptides Based on Zebrafish Prion-like Protein. Inorganic Chemistry, 2009, 48, 7330-7340.	1.9	27
16	Metal Transport and Homeostasis within the Human Body: Toxicity Associated with Transport Abnormalities. Current Medicinal Chemistry, 2012, 19, 2738-2759.	1.2	26
17	The unusual binding mechanism of Cu(<scp>ii</scp>) ions to the poly-histidyl domain of a peptide found in the venom of an African viper. Dalton Transactions, 2014, 43, 16680-16689.	1.6	25
18	Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates. Journal of Inorganic Biochemistry, 2018, 180, 101-118.	1.5	25

#	Article	IF	CITATIONS
19	Histidine tracts in human transcription factors: insight into metal ion coordination ability. Journal of Biological Inorganic Chemistry, 2018, 23, 81-90.	1.1	24
20	Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein. Journal of Inorganic Biochemistry, 2012, 107, 73-81.	1.5	23
21	Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy. Current Medicinal Chemistry, 2019, 26, 624-647.	1.2	23
22	Chelating ability and biological activity of hesperetin Schiff base. Journal of Inorganic Biochemistry, 2015, 143, 34-47.	1.5	21
23	Impact of histidine spacing on modified polyhistidine tag – Metal ion interactions. Inorganica Chimica Acta, 2018, 472, 119-126.	1.2	21
24	Biophysical approaches for the study of metal-protein interactions. Journal of Inorganic Biochemistry, 2019, 199, 110783.	1.5	21
25	Zinc(II)—The Overlooked Éminence Grise of Chloroquine's Fight against COVID-19?. Pharmaceuticals, 2020, 13, 228.	1.7	21
26	Polythiol binding to biologically relevant metal ions. Dalton Transactions, 2011, 40, 10434.	1.6	20
27	Zn(II) - pramlintide: Stability, binding sites and unexpected aggregation. Journal of Inorganic Biochemistry, 2017, 174, 150-155.	1.5	20
28	Copper(II) and Amylin Analogues: A Complicated Relationship. Inorganic Chemistry, 2020, 59, 2527-2535.	1.9	20
29	The zinc-binding fragment of HypA from Helicobacter pylori: a tempting site also for nickel ions. Dalton Transactions, 2013, 42, 6012.	1.6	19
30	Specific interactions of Bi(III) with the Cys-Xaa-Cys unit of a peptide sequence. Dalton Transactions, 2009, , 9131.	1.6	18
31	Bioinorganic chemistry of calcitermin – the picklock of its antimicrobial activity. Dalton Transactions, 2019, 48, 13740-13752.	1.6	17
32	Secondary structure confirmation and localization of Mg ²⁺ ions in the mammalian CPEB3 ribozyme. Rna, 2016, 22, 750-763.	1.6	16
33	<i>Candida albicans</i> zincophore and zinc transporter interactions with Zn(<scp>ii</scp>) and Ni(<scp>ii</scp>). Dalton Transactions, 2018, 47, 2646-2654.	1.6	16
34	Hexaamminecobalt(III) – Probing Metal Ion Binding Sites in Nucleic Acids by NMR Spectroscopy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1313-1320.	0.6	14
35	Zn(II) and Ni(II) complexes with poly-histidyl peptides derived from a snake venom. Inorganica Chimica Acta, 2018, 472, 149-156.	1.2	12
36	Chemical "Butterfly Effect―Explaining the Coordination Chemistry and Antimicrobial Properties of Clavanin Complexes. Inorganic Chemistry, 2021, 60, 12730-12734.	1.9	11

#	Article	IF	CITATIONS
37	Uncapping the N-terminus of a ubiquitous His-tag peptide enhances its Cu ²⁺ binding affinity. Dalton Transactions, 2019, 48, 13567-13579.	1.6	10
38	Thermodynamic and spectroscopic study of Cu(<scp>ii</scp>) and Zn(<scp>ii</scp>) complexes with the (148–156) peptide fragment of C4YJH2, a putative metal transporter of <i>Candida albicans</i> . Metallomics, 2019, 11, 1988-1998.	1.0	10
39	Novel insights into the metal binding ability of ZinT periplasmic protein from Escherichia coli and Salmonella enterica. Dalton Transactions, 2020, 49, 9393-9403.	1.6	10
40	Zn-Enhanced Asp-Rich Antimicrobial Peptides: N-Terminal Coordination by Zn(II) and Cu(II), Which Distinguishes Cu(II) Binding to Different Peptides. International Journal of Molecular Sciences, 2021, 22, 6971.	1.8	10
41	Fungal Zinc Homeostasis – A Tug of War Between the Pathogen and Host. Current Medicinal Chemistry, 2016, 23, 3717-3729.	1.2	10
42	Metal Complexes of Two Specific Regions of ZnuA, a Periplasmic Zinc(II) Transporter from <i>Escherichia coli</i> . Inorganic Chemistry, 2020, 59, 1947-1958.	1.9	9
43	How Zinc-Binding Systems, Expressed by Human Pathogens, Acquire Zinc from the Colonized Host Environment: A Critical Review on Zincophores. Current Medicinal Chemistry, 2021, 28, 7312-7338.	1.2	9
44	Zn2+ and Cu2+ Binding to the Extramembrane Loop of Zrt2, a Zinc Transporter of Candida albicans. Biomolecules, 2022, 12, 121.	1.8	9
45	The N-terminal domain of Helicobacter pylori's Hpn protein: The role of multiple histidine residues. Journal of Inorganic Biochemistry, 2021, 214, 111304.	1.5	8
46	The intrinsically disordered C-terminal F domain of the ecdysteroid receptor from Aedes aegypti exhibits metal ion-binding ability. Journal of Steroid Biochemistry and Molecular Biology, 2019, 186, 42-55.	1.2	7
47	Metal Complexation Mechanisms of Polyphenols Associated to Alzheimer's Disease. Current Medicinal Chemistry, 2021, 28, 7278-7294.	1.2	7
48	An efficient copper(III) catalyst in the four electron reduction of molecular oxygen by l-ascorbic acid. Journal of Molecular Catalysis A, 2011, 334, 77-82.	4.8	6
49	Investigation on the metal binding sites of a putative Zn(<scp>ii</scp>) transporter in opportunistic yeast species <i>Candida albicans</i> . New Journal of Chemistry, 2018, 42, 8123-8130.	1.4	6
50	Pneumococcal histidine triads – involved not only in Zn ²⁺ , but also Ni ²⁺ binding?. Metallomics, 2018, 10, 1631-1637.	1.0	6
51	Copper(II)-Induced Restructuring of ZnuD, a Zinc(II) Transporter from <i>Neisseria meningitidis</i> . Inorganic Chemistry, 2019, 58, 5932-5942.	1.9	6
52	Zinc Binding Sites Conserved in Short Neuropeptides Containing a Diphenylalanine Motif. Inorganic Chemistry, 2020, 59, 925-929.	1.9	6
53	Solution structure and metal ion binding sites of the human CPEB3 ribozyme's P4 domain. Journal of Biological Inorganic Chemistry, 2014, 19, 903-912.	1.1	5
54	Specific Zn(II)-binding site in the C-terminus of Aspf2, a zincophore from <i>Aspergillus fumigatus</i> . Metallomics, 2022, 14, .	1.0	5

#	Article	IF	CITATIONS
55	Poly-Xaa Sequences in Proteins - Biological Role and Interactions with Metal Ions: Chemical and Medical Aspects. Current Medicinal Chemistry, 2018, 25, 22-48.	1.2	4
56	Pneumococcal HxxHxH triad – Copper(II) interactions – How important is the â€~x'?. Inorganica Chimica Acta, 2019, 488, 255-259.	1.2	4
57	Peptidomimetics – An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. Journal of Inorganic Biochemistry, 2021, 217, 111386.	1.5	4
58	Thermodynamic surprises of Cu(II)–amylin analogue complexes in membrane mimicking solutions. Scientific Reports, 2022, 12, 425.	1.6	4
59	HENRYK — An endless source of metal coordination surprises. Journal of Inorganic Biochemistry, 2016, 163, 258-265.	1.5	3
60	Copper(II)-Binding Induces a Unique Polyproline Type II Helical Structure within the Ion-Binding Segment in the Intrinsically Disordered F-Domain of Ecdysteroid Receptor from <i>Aedes aegypti</i> . Inorganic Chemistry, 2019, 58, 11782-11792.	1.9	3
61	A Comparative Study on Nickel Binding to Hpn-like Polypeptides from Two Helicobacter pylori Strains. International Journal of Molecular Sciences, 2021, 22, 13210.	1.8	3
62	Periplasmic HupE region-Ni 2+ interactions: Thermodynamics, binding mode and competition with Cu 2+ and Zn 2+. Inorganica Chimica Acta, 2017, 460, 141-147.	1.2	1
63	Metal interactions with the transmembrane region of HupE Ni2+ transporter explain its efficiency. Journal of Inorganic Biochemistry, 2018, 180, 33-38.	1.5	1
64	Metal specificity of the Ni(<scp>ii</scp>) and Zn(<scp>ii</scp>) binding sites of the N-terminal and G-domain of <i>E. coli</i> HypB. Dalton Transactions, 2021, 50, 12635-12647.	1.6	1
65	Alternative DNA Structures, Switches and Nanomachines. , 2015, , 329-490.		0
66	Preface. Journal of Inorganic Biochemistry, 2016, 163, 229.	1.5	0
67	Zn(II)-alloferon complexes – Similar sequence, different coordination modes, no antibacterial activity. Journal of Inorganic Biochemistry, 2020, 213, 111275.	1.5	Ο
68	INTERLABORATORY VIRTUAL COLLABORATIVE EXPERIENCES IN CHEMISTRY LABS. INTED Proceedings, 2022, , .	0.0	0
69	CHAPTER 4. Nickel Binding Sites – Coordination Modes and Thermodynamics. 2-Oxoglutarate-Dependent Oxygenases. 0. 43-59	0.8	0