Awais Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2597935/publications.pdf Version: 2024-02-01

ANNAIG KUAN

#	Article	IF	CITATIONS
1	Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. Molecular Plant, 2017, 10, 1047-1064.	8.3	380
2	Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 2018, 9, 4580.	12.8	181
3	Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics, 2020, 52, 1423-1432.	21.4	168
4	The Plant Pathology Challenge 2020 data set to classify foliar disease of apples. Applications in Plant Sciences, 2020, 8, e11390.	2.1	98
5	Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping. G3: Genes, Genomes, Genetics, 2020, 10, 281-292.	1.8	65
6	Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant, 2021, 14, 1454-1471.	8.3	47
7	Development of an integrated 200K <scp>SNP</scp> genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (<i>Pyrus</i>). Plant Biotechnology Journal, 2019, 17, 1582-1594.	8.3	46
8	Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population. Genetics, 2020, 215, 579-595.	2.9	42
9	Status of fire blight resistance breeding in Malus. Journal of Plant Pathology, 2021, 103, 3-12.	1.2	33
10	New North American Isolates of <i>Venturia inaequalis</i> Can Overcome Apple Scab Resistance of <i>Malus floribunda</i> 821. Plant Disease, 2020, 104, 649-655.	1.4	32
11	Potential role of weather, soil and plant microbial communities in rapid decline of apple trees. PLoS ONE, 2019, 14, e0213293.	2.5	28
12	Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. Theoretical and Applied Genetics, 2022, 135, 3961-3985.	3.6	28
13	Identification of Novel Strain-Specific and Environment-Dependent Minor QTLs Linked to Fire Blight Resistance in Apples. Plant Molecular Biology Reporter, 2018, 36, 247-256.	1.8	27
14	Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. CABI Agriculture and Bioscience, 2020, 1, .	2.4	26
15	Differential gene regulatory pathways and co-expression networks associated with fire blight infection in apple (Malus Ä— domestica). Horticulture Research, 2019, 6, 35.	6.3	20
16	Distinct patterns of natural selection determine sub-population structure in the fire blight pathogen, Erwinia amylovora. Scientific Reports, 2019, 9, 14017.	3.3	18
17	Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nature Genetics, 2020, 52, 1256-1264.	21.4	13
18	Comparative evaluation of lateral flow immunoassays, LAMP, and quantitative PCR for diagnosis of fire blight in apple orchards. Journal of Plant Pathology, 2021, 103, 131-142.	1.2	13

Awais Khan

#	Article	IF	CITATIONS
19	Root system traits impact early fire blight susceptibility in apple (Malus × domestica). BMC Plant Biology, 2019, 19, 579.	3.6	12
20	Laccase Directed Lignification Is One of the Major Processes Associated With the Defense Response Against Pythium ultimum Infection in Apple Roots. Frontiers in Plant Science, 2021, 12, 629776.	3.6	12
21	Pear genetics: Recent advances, new prospects, and a roadmap for the future. Horticulture Research, 2022, 9, .	6.3	12
22	Genomeâ€wide association mapping identifies novel loci underlying fire blight resistance in apple. Plant Genome, 2021, 14, e20087.	2.8	11
23	Rare instances of haploid inducer DNA in potato dihaploids and ploidy-dependent genome instability. Plant Cell, 2021, 33, 2149-2163.	6.6	11
24	Candidate gene mapping identifies genomic variations in the fire blight susceptibility genes HIPM and DIPM across the Malus germplasm. Scientific Reports, 2020, 10, 16317.	3.3	10
25	Complete Genome Sequence of the Fire Blight Pathogen Strain <i>Erwinia amylovora</i> Ea1189. Molecular Plant-Microbe Interactions, 2020, 33, 1277-1279.	2.6	10
26	An accumulation of genetic variation and selection across the disease-related genes during apple domestication. Tree Genetics and Genomes, 2021, 17, 1.	1.6	10
27	Opportunities and Challenges to Implementing Genomic Selection in Clonally Propagated Crops. , 2017, , 185-198.		8
28	Contrasting genetic variation and positive selection followed the divergence of NBS-encoding genes in Asian and European pears. BMC Genomics, 2020, 21, 809.	2.8	7
29	3D plant root system reconstruction based on fusion of deep structure-from-motion and IMU. Multimedia Tools and Applications, 2021, 80, 17315-17331.	3.9	5
30	Identification of Non-Pleiotropic Loci in Flowering and Maturity Control in Soybean. Agronomy, 2020, 10, 1204.	3.0	4
31	Origin of the Domesticated Apples. Compendium of Plant Genomes, 2021, , 383-394.	0.5	3
32	Simultaneous Direct Depth Estimation and Synthesis Stereo for Single Image Plant Root Reconstruction. IEEE Transactions on Image Processing, 2021, 30, 4883-4893.	9.8	3
33	Phenology-Adjusted Stress Severity Index to Assess Genotypic Responses to Terminal Drought in Field Grown Potato. Agronomy, 2020, 10, 1298.	3.0	2
34	Characterization of genes involved in (p)ppGpp precursor biosynthesis in Erwinia amylovora. Journal of Plant Pathology, 2021, 103, 79-88.	1.2	2