List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/259788/publications.pdf Version: 2024-02-01

YONCYINLL

#	Article	IF	CITATIONS
1	Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2006, 115, 134-139.	4.0	237
2	Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sensors and Actuators B: Chemical, 2008, 134, 780-786.	4.0	222
3	Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles. Journal of the American Chemical Society, 2010, 132, 3047-3054.	6.6	218
4	Controlling Supramolecular Chirality of Two-Component Hydrogels by <i>J</i> - and <i>H</i> -Aggregation of Building Blocks. Journal of the American Chemical Society, 2018, 140, 6467-6473.	6.6	165
5	Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosensors and Bioelectronics, 2009, 24, 3242-3247.	5.3	145
6	Halogen-Assisted Piezochromic Supramolecular Assemblies for Versatile Haptic Memory. Journal of the American Chemical Society, 2017, 139, 436-441.	6.6	142
7	Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta, 2007, 73, 431-437.	2.9	139
8	Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosensors and Bioelectronics, 2007, 22, 3120-3125.	5.3	138
9	Preparation and Electrochemical Response of 1â^'3 nm Pt Disk Electrodes. Analytical Chemistry, 2009, 81, 5496-5502.	3.2	134
10	A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosensors and Bioelectronics, 2006, 22, 253-259.	5.3	120
11	Highly Effective Carbon Fixation via Catalytic Conversion of CO ₂ by an Acylamide-Containing Metal–Organic Framework. Chemistry of Materials, 2017, 29, 9256-9261.	3.2	116
12	Isolation of 1,2,4,3-Triazaborol-3-yl-metal (Li, Mg, Al, Au, Zn, Sb, Bi) Derivatives and Reactivity toward CO and Isonitriles. Journal of the American Chemical Society, 2016, 138, 6650-6661.	6.6	114
13	Control on Dimensions and Supramolecular Chirality of Self-Assemblies through Light and Metal Ions. Journal of the American Chemical Society, 2018, 140, 16275-16283.	6.6	110
14	Ultrastable Thorium Metal–Organic Frameworks for Efficient Iodine Adsorption. Inorganic Chemistry, 2020, 59, 4435-4442.	1.9	98
15	4-Diphenylamino-phenyl substituted pyrazine: nonlinear optical switching by protonation. Journal of Materials Chemistry C, 2015, 3, 9191-9196.	2.7	93
16	Ferroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectric. Nature Materials, 2021, 20, 612-617.	13.3	87
17	A flow injection chemiluminescence method for the determination of fluoroquinolone derivative using the reaction of luminol and hydrogen peroxide catalyzed by gold nanoparticles. Talanta, 2007, 72, 1066-1072.	2.9	83
18	Occurrence of Chiral Nanostructures Induced by Multiple Hydrogen Bonds. Journal of the American Chemical Society, 2019, 141, 9946-9954.	6.6	81

#	Article	IF	CITATIONS
19	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56, 6715-6718.	2.2	81
20	Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure. Biosensors and Bioelectronics, 2013, 41, 576-581.	5.3	80
21	Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Mikrochimica Acta, 2009, 164, 107-112.	2.5	79
22	Alkene–Carbene Isomerization induced by Borane: Access to an Asymmetrical Diborene. Journal of the American Chemical Society, 2017, 139, 5047-5050.	6.6	78
23	Pyrene ontaining Twistarene: Twelve Benzene Rings Fused in a Row. Angewandte Chemie - International Edition, 2018, 57, 13555-13559.	7.2	76
24	Nanopore-based Strategy for Selective Detection of Single Carcinoembryonic Antigen (CEA) Molecules. Analytical Chemistry, 2020, 92, 3042-3049.	3.2	74
25	Single-crystal growth, structures, charge transfer and transport properties of anthracene-F ₄ TCNQ and tetracene-F ₄ TCNQ charge-transfer compounds. CrystEngComm, 2017, 19, 618-624.	1.3	70
26	Preparation and application of cysteine-capped ZnS nanoparticles as fluorescence probe in the determination of nucleic acids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 1719-1724.	2.0	68
27	Palladacycle-Catalyzed Asymmetric Intermolecular Construction of Chiral Tertiary P-Heterocycles by Stepwise Addition of H–P–H Bonds to Bis(enones). Organometallics, 2012, 31, 4871-4875.	1.1	67
28	Boosting the Iodine Adsorption and Radioresistance of Thâ€UiOâ€66 MOFs via Aromatic Substitution. Chemistry - A European Journal, 2021, 27, 1286-1291.	1.7	65
29	Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their Substitutional Symmetry. Advanced Materials, 2017, 29, 1605053.	11.1	64
30	Isolation of a Diborane(6) Dication: Formation and Cleavage of an Electron-Precise B(sp ³)–B(sp ³) Bond. Journal of the American Chemical Society, 2016, 138, 8623-8629.	6.6	63
31	Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe. Analytica Chimica Acta, 2002, 466, 87-92.	2.6	62
32	A crystalline Cu–Sn–S framework for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 19410-19416.	5.2	60
33	Crystalline Neutral Allenic Diborene. Angewandte Chemie - International Edition, 2017, 56, 9829-9832.	7.2	58
34	In situ electrodeposition of Pt nanoclusters on glassy carbon surface modified by monolayer choline film and their electrochemical applications. Electrochemistry Communications, 2008, 10, 195-199.	2.3	55
35	Enantioselective Addition of Diphenylphosphine to 3â€Methylâ€4â€nitroâ€5â€alkenylisoxazoles. Advanced Synthesis and Catalysis, 2013, 355, 1403-1408.	2.1	55
36	Preparation of unique PEDOT nanorods with a couple of cuspate tips by reverse interfacial polymerization and their electrocatalytic application to detect nitrite. Journal of Materials Chemistry, 2010, 20, 10277.	6.7	52

#	Article	IF	CITATIONS
37	Selective Single Molecule Nanopore Sensing of microRNA Using PNA Functionalized Magnetic Core–Shell Fe ₃ O ₄ –Au Nanoparticles. Analytical Chemistry, 2019, 91, 7965-7970.	3.2	52
38	Asymmetric 1,4-Conjugate Addition of Diarylphosphines to α,β,γ,Î′-Unsaturated Ketones Catalyzed by Transition-Metal Pincer Complexes. Organometallics, 2015, 34, 5196-5201.	1.1	51
39	CdS nanocrystal induced chemiluminescence: reaction mechanism and applications. Nanotechnology, 2007, 18, 225602.	1.3	50
40	Bisguanidinium dinuclear oxodiperoxomolybdosulfate ion pair-catalyzed enantioselective sulfoxidation. Nature Communications, 2016, 7, 13455.	5.8	48
41	Monolayer covalent modification of 5-hydroxytryptophan on glassy carbon electrodes for simultaneous determination of uric acid and ascorbic acid. Electrochimica Acta, 2006, 51, 5794-5801.	2.6	46
42	Size-Exclusion Properties of Nanoporous Films Derived from Polystyreneâ^'Poly(methylmethacrylate) Diblock Copolymers Assessed Using Direct Electrochemistry of Ferritin. Analytical Chemistry, 2009, 81, 851-855.	3.2	46
43	Synthesis of a Bent 2-Silaallene with a Perturbed Electronic Structure from a Cyclic Alkyl(amino) Carbene-Diiodosilylene. Inorganic Chemistry, 2016, 55, 9091-9098.	1.9	45
44	Trapping a Silicon(I) Radical with Carbenes: A Cationic cAAC–Silicon(I) Radical and an NHC–Parentâ€ s ilyliumylidene Cation. Angewandte Chemie - International Edition, 2017, 56, 7573-7578.	7.2	45
45	Waterâ€Bindingâ€Mediated Gelation/Crystallization and Thermosensitive Superchirality. Angewandte Chemie - International Edition, 2018, 57, 7774-7779.	7.2	45
46	Novel fluorescent colloids as a DNA fluorescence probe. Analytical and Bioanalytical Chemistry, 2003, 377, 346-349.	1.9	43
47	Single Pt Nanowire Electrode: Preparation, Electrochemistry, and Electrocatalysis. Analytical Chemistry, 2013, 85, 4135-4140.	3.2	43
48	Sensitive chemiluminescence method for the determination of glutathione, l-cysteine and 6-mercaptopurine. Mikrochimica Acta, 2008, 163, 263-269.	2.5	42
49	Sensitive Determination of Dopamine and Uric Acid by the Use of a Glassy Carbon Electrode Modified with Poly(3-methylthiophene)/Gold Nanoparticle Composites. Analytical Sciences, 2008, 24, 1563-1568.	0.8	42
50	Construction of hybrid nanocomposites containing Pt nanoparticles and poly(3-methylthiophene) nanorods at a glassy carbon electrode: Characterization, electrochemistry, and electrocatalysis. Electrochimica Acta, 2010, 55, 5905-5910.	2.6	42
51	Sensing hydrogen peroxide using a glassy carbon electrode modified with in-situ electrodeposited platinum-gold bimetallic nanoclusters on a graphene surface. Mikrochimica Acta, 2015, 182, 265-272.	2.5	42
52	Metal Coordination Sphere Deformation Induced Highly Stokesâ€Shifted, Ultra Broadband Emission in 2D Hybrid Leadâ€Bromide Perovskites and Investigation of Its Origin. Angewandte Chemie - International Edition, 2020, 59, 10791-10796.	7.2	42
53	Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens. Analytical and Bioanalytical Chemistry, 2007, 387, 585-592.	1.9	40
54	Highly Enantioselective Synthesis of (2-Pyridyl)phosphine Based C-Chiral Unsymmetrical P,N-Ligands Using a Chiral Palladium Complex. Organometallics, 2009, 28, 3941-3946.	1.1	40

#	Article	IF	CITATIONS
55	The deposition of Au–Pt core–shell nanoparticles on reduced graphene oxide and their catalytic activity. Nanotechnology, 2013, 24, 295402.	1.3	40
56	Azaborabutadienes: Synthesis by Metalâ€Free Carboboration of Nitriles and Utility as Building Blocks for B,Nâ€Heterocycles. Angewandte Chemie - International Edition, 2016, 55, 14718-14722.	7.2	40
57	Impact of C–H···X (X = F, N) and π–Ĩ€ Interactions on Tuning the Degree of Charge Transfer in F ₆ TNAP-Based Organic Binary Compound Single Crystals. Crystal Growth and Design, 2018, 18, 1776-1785.	1.4	40
58	Inducing formation of a corrugated, white-light emitting 2D lead-bromide perovskite <i>via</i> subtle changes in templating cation. Journal of Materials Chemistry C, 2020, 8, 889-893.	2.7	40
59	Electrochemical Characterization of Nanoporous Films Fabricated from a Polystyreneâ^Poly(methylmethacrylate) Diblock Copolymer:  Monitoring the Removal of the PMMA Domains and Exploring the Functional Groups on the Nanopore Surface. Langmuir, 2007, 23, 12771-12776.	1.6	38
60	The synthesis and efficient one-pot catalytic "self-breeding―of asymmetrical NC(sp ³)E-hybridised pincer complexes. Chemical Communications, 2016, 52, 4211-4214.	2.2	38
61	Single gold nanowire electrodes and single Pt@Au nanowire electrodes: electrochemistry and applications. Chemical Communications, 2017, 53, 2850-2853.	2.2	38
62	Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay. Biosensors and Bioelectronics, 2018, 99, 431-437.	5.3	38
63	Stibine-protected Au ₁₃ nanoclusters: syntheses, properties and facile conversion to GSH-protected Au ₂₅ nanocluster. Chemical Science, 2018, 9, 8723-8730.	3.7	38
64	Application of l-cysteine-capped nano-ZnS as a fluorescence probe for the determination of proteins. Analytical and Bioanalytical Chemistry, 2004, 378, 811-815.	1.9	36
65	Fabrication of a Nanobiocomposite Film Containing Heme Proteins and Carbon Nanotubes on a Choline Modified Glassy Carbon Electrode: Direct Electrochemistry and Electrochemical Catalysis. Electroanalysis, 2006, 18, 2085-2091.	1.5	36
66	Surface Chemical Functionalization of Cylindrical Nanopores Derived from a Polystyreneâ^'Poly(methylmethacrylate) Diblock Copolymer via Amidation. Langmuir, 2008, 24, 8959-8963.	1.6	35
67	The Original Coordination Chemistry of 2-Phosphaphenol with Copper(I) and Gold(I) Halides. Organometallics, 2013, 32, 3562-3565.	1.1	35
68	Palladacycleâ€Catalyzed Tandem Allylic Amination/Allylation Protocol for Oneâ€Pot Synthesis of 2â€Allylanilines from Allylic Alcohols. Advanced Synthesis and Catalysis, 2012, 354, 83-87.	2.1	34
69	A Crystalline Diazadiborinine Radical Cation and Its Boronâ€Centered Radical Reactivity. Angewandte Chemie - International Edition, 2018, 57, 7826-7829.	7.2	34
70	Synthesis, structure, physical properties and OLED application of pyrazine–triphenylamine fused conjugated compounds. RSC Advances, 2015, 5, 63080-63086.	1.7	33
71	Preparation, electrochemical responses and sensing application of Au disk nanoelectrodes down to 5 nm. RSC Advances, 2015, 5, 77248-77254.	1.7	33
72	Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through ï€-Stacked Viologens. Chemistry of Materials, 2018, 30, 5827-5830.	3.2	33

#	Article	IF	CITATIONS
73	Corrosion by Chloride Deicers on Highway Maintenance Equipment. Transportation Research Record, 2013, 2361, 106-113.	1.0	32
74	Engineering the Frontier Orbitals of a Diazadiborinine for Facile Activation of H ₂ , NH ₃ , and an Isonitrile. Angewandte Chemie - International Edition, 2018, 57, 7846-7849.	7.2	32
75	A flow-injection chemiluminescence method for the determination of some estrogens by enhancement of luminol–hydrogen peroxide–tetrasulfonated manganese phthalocyanine reaction. Talanta, 2006, 70, 219-224.	2.9	31
76	An ultrasensitive chemiluminescent immunosensor for the detection of human leptin using hemin/G-quadruplex DNAzymes-assembled signal amplifier. Talanta, 2013, 116, 816-821.	2.9	31
77	Boron Analogue of Vinylidene Dication Supported by Phosphines. Journal of the American Chemical Society, 2018, 140, 1255-1258.	6.6	31
78	Metal-Free Selective Borylation of Arenes by a Diazadiborinine via C–H/C–F Bond Activation and Dearomatization. Journal of the American Chemical Society, 2019, 141, 13729-13733.	6.6	31
79	A Highly Sensitive and Selective Assay for Cysteine Using the Chemiluminescence Reaction of Luminol and Hydrogen Peroxide. Mikrochimica Acta, 2005, 150, 95-99.	2.5	30
80	Facile Activation of Homoatomic Ï f Bonds in White Phosphorus and Diborane by a Diboraallene. Angewandte Chemie - International Edition, 2018, 57, 15691-15695.	7.2	30
81	Black phosphorus nanosheets based sensitive protease detection and inhibitor screening. Talanta, 2019, 197, 270-276.	2.9	30
82	Amidinate-Stabilized Group 9 Metal–Silicon(I) Dimer and â^'Silylene Complexes. Inorganic Chemistry, 2015, 54, 9968-9975.	1.9	29
83	Crystalline Tetraatomic Boron(0) Species. Journal of the American Chemical Society, 2019, 141, 5164-5168.	6.6	29
84	Investigation into the Synergistic Effect of Nano-sized Materials on the Anti-corrosion Properties of a Waterborne Epoxy Coating. International Journal of Electrochemical Science, 2016, 11, 6023-6042.	0.5	28
85	B–H Bond Activation by an Amidinate-Stabilized Amidosilylene: Non-Innocent Amidinate Ligand. Inorganic Chemistry, 2018, 57, 5879-5887.	1.9	28
86	Desymmetrization of Achiral Heterobicyclic Alkenes through Catalytic Asymmetric Hydrophosphination. Chemistry - an Asian Journal, 2018, 13, 2829-2833.	1.7	28
87	Stochastic Collision Electrochemistry from Single G-Quadruplex/Hemin: Electrochemical Amplification and MicroRNA Sensing. Analytical Chemistry, 2021, 93, 4593-4600.	3.2	28
88	Determination of proteins at nanogram levels by their quenching effect on the chemiluminscence reaction between luminol and hydrogen peroxide with manganese-tetrasulfonatophthalocyanine as a new catalyst. Analytical and Bioanalytical Chemistry, 2002, 374, 395-398.	1.9	27
89	Electrochemical determination of nitrite via covalent immobilization of a single-walled carbon nanotubes and single stranded deoxyribonucleic acid nanocomposite on a glassy carbon electrode. Mikrochimica Acta, 2010, 171, 63-69.	2.5	27
90	Diverse Bonding Activations in the Reactivity of a Pentaphenylborole toward Sodium Phosphaethynolate: Heterocycle Synthesis and Mechanistic Studies. Inorganic Chemistry, 2017, 56, 4112-4120.	1.9	27

#	Article	IF	CITATIONS
91	Crystalline Neutral Allenic Diborene. Angewandte Chemie, 2017, 129, 9961-9964.	1.6	27
92	Pyreneâ€Containing Twistarene: Twelve Benzene Rings Fused in a Row. Angewandte Chemie, 2018, 130, 13743-13747.	1.6	27
93	Size-Dependent Voltammetry at Single Silver Nanoelectrodes. Analytical Chemistry, 2018, 90, 9677-9681.	3.2	27
94	Azaborabutadienes: Synthesis by Metalâ€Free Carboboration of Nitriles and Utility as Building Blocks for B,Nâ€Heterocycles. Angewandte Chemie, 2016, 128, 14938-14942.	1.6	26
95	A Colorimetric and Fluorimetric Chemodosimeter for Copper Ion Based on the Conversion of Dihydropyrazine to Pyrazine. Chemistry - an Asian Journal, 2016, 11, 136-140.	1.7	26
96	Mechanochemical Synthesis of Phosphazaneâ€Based Frameworks. Chemistry - A European Journal, 2017, 23, 11279-11285.	1.7	26
97	Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
98	Effects of substrate roughness on the orientation of cylindrical domains in thin films of a polystyrene–poly(methylmethacrylate) diblock copolymer studied using atomic force microscopy and cyclic voltammetry. Polymer, 2009, 50, 2273-2280.	1.8	25
99	A Base-Stabilized Silyliumylidene Cation as a Ligand for Rhodium and Tungsten Complexes. Organometallics, 2014, 33, 3646-3648.	1.1	25
100	Synthesis and Hydrolytic Studies on the Air-Stable [(4-CN-PhO)(E)P(Î1⁄4-N ^{<i>t</i>} Bu)] ₂ (E = O, S, and Se) Cyclodiphosphazanes. Inorganic Chemistry, 2015, 54, 6423-6432.	1.9	25
101	Molecular Engineering toward Coexistence of Dielectric and Optical Switch Behavior in Hybrid Perovskite Phase Transition Material. Journal of Physical Chemistry A, 2018, 122, 6416-6423.	1.1	25
102	Targeted Synthesis of Trimeric Organic–Bromoplumbate Hybrids That Display Intrinsic, Highly Stokes-Shifted, Broadband Emission. Chemistry of Materials, 2020, 32, 4431-4441.	3.2	25
103	Covalent immobilization of single-walled carbon nanotubes and single-stranded deoxyribonucleic acid nanocomposites on glassy carbon electrode: Preparation, characterization, and applications. Talanta, 2008, 77, 833-838.	2.9	24
104	Single Ag Nanowire Electrodes and Single Pt@Ag Nanowire Electrodes: Fabrication, Electrocatalysis, and Surface-Enhanced Raman Scattering Applications. Analytical Chemistry, 2019, 91, 4291-4295.	3.2	24
105	Catalytic Asymmetric Diarylphosphine Addition to α-Diazoesters for the Synthesis of P-Stereogenic Phosphinates via P*—N Bond Formation. Journal of Organic Chemistry, 2020, 85, 14763-14771.	1.7	24
106	Analytes Triggered Conformational Switch of i-Motif DNA inside Gold-Decorated Solid-State Nanopores. ACS Sensors, 2020, 5, 2177-2183.	4.0	24
107	Nanopore-Based Single-Entity Electrochemistry for the Label-Free Monitoring of Single-Molecule Glycoprotein–Boronate Affinity Interaction and Its Sensing Application. Analytical Chemistry, 2022, 94, 5715-5722.	3.2	24
108	Corrosion inhibitors for metals in maintenance equipment: introduction and recent developments. Corrosion Reviews, 2014, 32, 163-181.	1.0	23

#	Article	IF	CITATIONS
109	N-Heteroheptacenequinone and N-heterononacenequinone: synthesis, physical properties, crystal structures and photoelectrochemical behaviors. Journal of Materials Chemistry C, 2015, 3, 9877-9884.	2.7	23
110	Reactivity of an amidinato silylene and germylene toward germanium(<scp>ii</scp>), tin(<scp>ii</scp>) and lead(<scp>ii</scp>) halides. Dalton Transactions, 2017, 46, 3642-3648.	1.6	23
111	Two-Dimensional and Emission-Tunable: An Unusual Perovskite Constructed from Lindqvist-Type [Pb6Br19]7– Nanoclusters. Inorganic Chemistry, 2018, 57, 14035-14038.	1.9	23
112	Dual-signal amplification strategy for miRNA sensing with high sensitivity and selectivity by use of single Au nanowire electrodes. Biosensors and Bioelectronics, 2019, 131, 88-94.	5.3	23
113	Enzyme-Encapsulated Zeolitic Imidazolate Frameworks Formed Inside the Single Class Nanopore: Catalytic Performance and Sensing Application. Analytical Chemistry, 2021, 93, 12257-12264.	3.2	23
114	Enantioselective Dielsâ^'Alder Reaction of 3-Diphenylphosphinofuran with 1-Phenyl-3,4-dimethylphosphole and Subsequent Synthetic Manipulations of the Cycloadduct. Organometallics, 2009, 28, 6254-6259.	1.1	22
115	Isolation and Reactivity of 1,4,2-Diazaborole. Journal of the American Chemical Society, 2015, 137, 11274-11277.	6.6	22
116	Mechanosynthesis of Higherâ€Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design**. Angewandte Chemie - International Edition, 2021, 60, 17481-17490.	7.2	22
117	<i>In Situ</i> SERS Monitoring of the Plasmon-Driven Catalytic Reaction by Using Single Ag@Au Nanowires as Substrates. Analytical Chemistry, 2021, 93, 11736-11744.	3.2	22
118	Application of L-Cysteine-Capped ZnS Nanoparticles in the Determination of Nucleic Acids Using the Resonance Light Scattering Method. Mikrochimica Acta, 2004, 146, 13-19.	2.5	20
119	Formation of Au nanoflowers on cysteamine monolayer and their electrocatalytic oxidation of nitrite. Analytical Methods, 2011, 3, 1399.	1.3	20
120	Isomerization of Secondary Phosphirane into Terminal Phosphinidene Complexes: An Analogy between Monovalent Phosphorus and Transition Metals. Angewandte Chemie - International Edition, 2015, 54, 12891-12893.	7.2	20
121	A cationic thorium–organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chemical Science, 2021, 12, 15833-15842.	3.7	20
122	Synthesis of a Tin(II) 1,3-Benzobis(thiophosphinoyl)methanediide Complex and Its Reactions with Aluminum Compounds. Organometallics, 2012, 31, 6538-6546.	1.1	19
123	Synthesis of a Germylidenide Anion from the C–C Bond Activation of a Bis(germylene). Organometallics, 2016, 35, 1060-1063.	1.1	19
124	Single Pt–Pd Bimetallic Nanoparticle Electrode: Controllable Fabrication and Unique Electrocatalytic Performance for the Methanol Oxidation Reaction. Chemistry - A European Journal, 2019, 25, 4935-4940.	1.7	19
125	Asymmetric Catalytic 1,2â€Dihydrophosphination of Secondary 1,2â€Diphosphines – Direct Access to Free <i>P</i> *―and <i>P</i> *, <i>C</i> *â€Diphosphines. Advanced Synthesis and Catalysis, 2020, 362, 2373-2378.	2.1	19
126	Design, Synthesis, and Stereochemical Evaluation of a Novel Chiral Amine–Palladacycle. European Journal of Inorganic Chemistry, 2008, 2008, 1880-1891.	1.0	18

#	Article	IF	CITATIONS
127	An Approach to the Efficient Syntheses of Chiral Phosphino―Carboxylic Acid Esters. Advanced Synthesis and Catalysis, 2015, 357, 3297-3302.	2.1	18
128	Crystalline boron-linked tetraaminoethylene radical cations. Chemical Science, 2017, 8, 7419-7423.	3.7	18
129	A Crystalline Diazadiborinine Radical Cation and Its Boronâ€Centered Radical Reactivity. Angewandte Chemie, 2018, 130, 7952-7955.	1.6	18
130	Hybrid 2D [Pb(CH ₃ NH ₂)I ₂] _{<i>n</i>} Coordination Polymer Precursor for Scalable Perovskite Deposition. ACS Energy Letters, 2020, 5, 2305-2312.	8.8	18
131	Rational Design of a Novel Chiral Palladacycle: Synthesis, Optical Resolution, and Stereochemical Evaluation. European Journal of Inorganic Chemistry, 2009, 2009, 267-276.	1.0	17
132	Novel Enantioselective Synthesis of Functionalized Pyridylarsanes by a Chiral Palladium Template Promoted Asymmetric Hydroarsanation Reaction. European Journal of Inorganic Chemistry, 2009, 2009, 4134-4140.	1.0	17
133	Synthesis and Characterisation of a Novel Chiral Bidentate Pyridine-N-Heterocyclic Carbene-Based Palladacycle. European Journal of Inorganic Chemistry, 2010, 2010, 1413-1418.	1.0	17
134	Electrochemical study of the diffusion of cytochrome c within nanoscale pores derived from cylinder-forming polystyrene-poly(methylmethacrylate) diblock copolymers. Electrochimica Acta, 2011, 56, 10185-10190.	2.6	17
135	Highly selective anti-cancer properties of ester functionalized enantiopure dinuclear gold(I)-diphosphine. European Journal of Medicinal Chemistry, 2015, 98, 250-255.	2.6	17
136	Efficient and stereoselective synthesis of monomeric and bimetallic pincer complexes containing Pd-bonded stereogenic carbons. RSC Advances, 2016, 6, 75951-75959.	1.7	17
137	Unique Voltammetry of Silver Nanoparticles: From Single Particle to Aggregates. Analytical Chemistry, 2019, 91, 14188-14191.	3.2	17
138	A signal amplification strategy and sensing application using single gold nanoelectrodes. Analyst, The, 2019, 144, 310-316.	1.7	17
139	Amperometric sensing of hydrazine by using single gold nanopore electrodes filled with Prussian Blue and coated with polypyrrole and carbon dots. Mikrochimica Acta, 2019, 186, 350.	2.5	17
140	Interpenetration Control in Thorium Metal–Organic Frameworks: Structural Complexity toward Iodine Adsorption. Inorganic Chemistry, 2021, 60, 5617-5626.	1.9	17
141	Application of Functionalized Ag Nanoparticles for the Determination of Proteins at Nanogram Levels Using the Resonance Light Scattering Method. Mikrochimica Acta, 2004, 147, 81.	2.5	16
142	Formation of platinum nanoflowers on 3-aminopropyltriethoxysilane monolayer: Growth mechanism and electrocatalysis. Applied Catalysis A: General, 2011, 401, 226-232.	2.2	16
143	Heteroleptic Germanium(II) and Tin(II) Chlorides Supported by Anionic Ligands Derived from 2,3â€Dimethylâ€1,4â€diazaâ€1,3â€butadiene. European Journal of Inorganic Chemistry, 2014, 2014, 526-532.	1.0	16
144	Waterâ€Bindingâ€Mediated Gelation/Crystallization and Thermosensitive Superchirality. Angewandte Chemie, 2018, 130, 7900-7905.	1.6	16

#	Article	IF	CITATIONS
145	A simple strategy for the fabrication of gold-modified single nanopores and its application for miRNA sensing. Chemical Communications, 2019, 55, 10288-10291.	2.2	16
146	Intrinsic Electrocatalytic Activity of Single MoS ₂ Quantum Dot Collision on Ag Ultramicroelectrodes. Journal of Physical Chemistry C, 2021, 125, 3337-3345.	1.5	16
147	Fully conjugated azacorannulene dimer as large diaza[80]fullerene fragment. Nature Communications, 2022, 13, 1498.	5.8	16
148	Cetyltrimethylammonium bromide sensitized resonance light-scattering of nucleic acid–Pyronine B and its analytical application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 2505-2509.	2.0	15
149	Synthesis of a Chiral Palladacycle and Its Application in Asymmetric Hydrophosphanation Reactions. European Journal of Inorganic Chemistry, 2010, 2010, 4427-4437.	1.0	15
150	Electrochemical Determination of Nitrite and Iodate Based on Pt Nanoparticles Self-assembled on a Chitosan Modified Glassy Carbon Electrode. Analytical Sciences, 2011, 27, 1223-1228.	0.8	15
151	Ultralow Pt-loading bimetallic nanoflowers: fabrication and sensing applications. Nanotechnology, 2013, 24, 025501.	1.3	15
152	Acyclic Amidoâ€Containing Silanechalcogenones. European Journal of Inorganic Chemistry, 2015, 2015, 3821-3824.	1.0	15
153	Reactivity of a Base-Stabilized Germanium(I) Dimer toward Group 9 Metal(I) Chloride and Dimanganese Decacarbonyl. Inorganic Chemistry, 2017, 56, 5402-5410.	1.9	15
154	Trapping a Silicon(I) Radical with Carbenes: A Cationic cAAC–Silicon(I) Radical and an NHC–Parentâ€ S ilyliumylidene Cation. Angewandte Chemie, 2017, 129, 7681-7686.	1.6	15
155	DNA nanosensors based on the use of single gold nanowire electrodes and Methylene Blue as an intercalator. Mikrochimica Acta, 2018, 185, 152.	2.5	15
156	Synthesis of Stereoprojecting, Chiral N-C(sp ³)-E Type Pincer Complexes. Organometallics, 2018, 37, 2272-2285.	1.1	15
157	Novel manganese(II)-based metal-organic gels: synthesis, characterization and application to chemiluminescent sensing of hydrogen peroxide and glucose. Mikrochimica Acta, 2019, 186, 696.	2.5	15
158	Bisguanidinium-Catalyzed Epoxidation of Allylic and Homoallylic Amines under Phase Transfer Conditions. ACS Catalysis, 2020, 10, 2684-2691.	5.5	15
159	Enantioselective, Highâ€Yielding Synthesis of Alcoholâ€Functionalized Diphosphanes Utilizing Asymmetric Control with a Chiral Auxiliary. European Journal of Inorganic Chemistry, 2009, 2009, 2375-2382.	1.0	14
160	Bis(N-heterocyclic olefin) Derivative: An Efficient Precursor for Isophosphindolylium Species. Inorganic Chemistry, 2017, 56, 8608-8614.	1.9	14
161	A Dimeric NHC–Silicon Monotelluride: Synthesis, Isomerization, and Reactivity. Angewandte Chemie - International Edition, 2017, 56, 11565-11569.	7.2	14
162	Laboratory Investigation of Washing Practices and Bio-Based Additive for Mitigating Metallic Corrosion by Magnesium Chloride Deicer. Journal of Materials in Civil Engineering, 2017, 29, 04016187.	1.3	14

#	Article	IF	CITATIONS
163	Structural Mimics of the [Fe]-Hydrogenase: A Complete Set for Group VIII Metals. Inorganic Chemistry, 2018, 57, 7113-7120.	1.9	14
164	Molecular Engineering of Pure 2D Lead″odide Perovskite Solar Absorbers Displaying Reduced Band Gaps and Dielectric Confinement. ChemSusChem, 2020, 13, 2693-2701.	3.6	14
165	Catalytic Approach toward Chiral P,N-Chelate Complexes Utilizing the Asymmetric Hydrophosphination Protocol. Inorganic Chemistry, 2020, 59, 3874-3886.	1.9	14
166	A Novel Enhancing Flow-Injection Chemiluminescence Method for the Determination of Glutathione Using the Reaction of Luminol with Hydrogen Peroxide. Mikrochimica Acta, 2003, 141, 41-45.	2.5	13
167	A Cyclometallated (Azobenzene)palladium(II) Complex of 1,4,7-Trithiacyclononane: Synthesis and Reactivity with Thioether-Dithiolate Metalloligands, Single-Crystal X-ray Diffraction Analyses and Electrochemical Studies. European Journal of Inorganic Chemistry, 2009, 2009, 2282-2293.	1.0	13
168	A Bis(germyliumylidene)silver(I) Complex Dication. Organometallics, 2018, 37, 1368-1372.	1.1	13
169	Engineering the Frontier Orbitals of a Diazadiborinine for Facile Activation of H ₂ , NH ₃ , and an Isonitrile. Angewandte Chemie, 2018, 130, 7972-7975.	1.6	13
170	Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Chromium and Cobalt Complexes. Inorganic Chemistry, 2020, 59, 4118-4128.	1.9	13
171	Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 17586-17594.	1.7	13
172	Ultralow platinum-loading bimetallic nanoflowers: Fabrication and high-performance electrocatalytic activity towards the oxidation of formic acid. Electrochemistry Communications, 2012, 25, 19-22.	2.3	12
173	Facile Activation of Homoatomic σ Bonds in White Phosphorus and Diborane by a Diboraallene. Angewandte Chemie, 2018, 130, 15917-15921.	1.6	12
174	Size-Dependent Electrochemistry and Electrocatalysis at Single Au@Pt Bimetallic Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 24740-24746.	1.5	12
175	Determination of nucleic acids with tetra-(N-hexadecylpyridiniumyl) porphyrin sensitized by cetyltrimethylammonium bromide (CTMAB) using a Rayleigh light-scattering technique. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 959-964.	2.0	11
176	A sensitive inhibition chemiluminescence method for the determination of trace tannic acid using the reaction of luminol–hydrogen peroxide catalysed by tetrasulphonated manganese phthalocyanine. Luminescence, 2007, 22, 46-52.	1.5	11
177	Synthesis of Homo―and Heteroâ€Bimetallic Arsenic Complexes by Means of Regioselective Monoinsertion of Alkynylarsane into the Pd–C Bond of a Palladacycle. European Journal of Inorganic Chemistry, 2011, 2011, 3111-3121.	1.0	11
178	Embedding a Ruthenium-Based Structural Mimic of the [Fe]-Hydrogenase Cofactor into Papain. Inorganic Chemistry, 2018, 57, 12206-12212.	1.9	11
179	Intrinsic Catalytic Activities from Single Enzyme@Metal–Organic Frameworks by Using a Stochastic Collision Electrochemical Technique. Journal of Physical Chemistry Letters, 2021, 12, 5443-5447.	2.1	11
180	Stochastic Collision Electrochemistry from Single Pt Nanoparticles: Electrocatalytic Amplification and MicroRNA Sensing. Analytical Chemistry, 2022, 94, 8202-8208.	3.2	11

#	Article	IF	CITATIONS
181	Determination of Proteins Based on Their Resonance Light Scattering Enhancement Effect on Manganese-Tetrasulfonatophthalocyanine. Mikrochimica Acta, 2003, 143, 275-279.	2.5	10
182	Efficient access to a designed phosphapalladacycle catalyst via enantioselective catalytic asymmetric hydrophosphination. Dalton Transactions, 2017, 46, 1311-1316.	1.6	10
183	Structure engineering: extending the length of azaacene derivatives through quinone bridges. Journal of Materials Chemistry C, 2018, 6, 3628-3633.	2.7	10
184	Dual-signaling amplification strategy for glutathione sensing by using single gold nanoelectrodes. Analytica Chimica Acta, 2021, 1166, 338579.	2.6	10
185	Access to a Chiral Phosphine–NHC Palladium(II) Complex via the Asymmetric Hydrophosphination of Achiral Vinyl Azoles. Organometallics, 2021, 40, 2118-2122.	1.1	10
186	A programmatic electrochemical nanosensor based on robust bipedal DNA walkers fueled by catalytic hairpin assembly. Sensors and Actuators B: Chemical, 2021, 347, 130563.	4.0	10
187	Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angewandte Chemie, 2022, 134, .	1.6	10
188	Simple and sensitive assay for nucleic acids by use of the resonance light-scattering technique with copper phthalocyanine tetrasulfonic acid in the presence of cetyltrimethylammonium bromide. Analytical and Bioanalytical Chemistry, 2003, 377, 675-680.	1.9	9
189	Determination of Nucleic Acid at Nanogram Levels with Manganese-Tetrasulfonatophthalocyanine Sensitized by Cetyltrimethylammonium Bromide Using a Resonance Light-Scattering Technique. Mikrochimica Acta, 2003, 142, 219-223.	2.5	9
190	Electrochemical Determination of Dopamine in the Presence of Ascorbic Acid and Uric Acid Using the Synergistic Effect of Gold Nanoflowers and L-Cysteamine Monolayer at the Surface of a Gold Electrode. Analytical Sciences, 2011, 27, 921.	0.8	9
191	Electrochemically Controlled Oneâ€Electron Oxidation Coupled to Consecutive Hydrogen Atom Transfer of Caffeine. ChemElectroChem, 2014, 1, 1557-1562.	1.7	9
192	Delocalized Hypervalent Silyl Radical Supported by Amidinate and Imino Substituents. Inorganic Chemistry, 2017, 56, 701-704.	1.9	9
193	Fabrication of single Pt@Au nanowire electrodes for monitoring hydrogen peroxide released from living cells. RSC Advances, 2017, 7, 44552-44558.	1.7	9
194	Isolation and Reactivity of a Chlorogermyliumylidene Featuring Two Ge-Cl Units. European Journal of Inorganic Chemistry, 2018, 2018, 2228-2231.	1.0	9
195	Epoxy-sealed single Pt nanoelectrodes: Fabrication and electrocatalytic performance for the methanol oxidation reaction. Electrochemistry Communications, 2018, 86, 63-67.	2.3	9
196	Single Cylindrical Nanopore Electrodes: Surface Functionalization, Unusual Voltammetry, and Sizeâ€Exclusion Properties. ChemElectroChem, 2018, 5, 292-299.	1.7	9
197	Ruthenacyclic Carbamoyl Complexes: Highly Efficient Catalysts for Organosilane Hydrolysis. European Journal of Inorganic Chemistry, 2018, 2018, 4982-4986.	1.0	9
198	Synthesis of Unique Phosphazane Macrocycles via Steric Activation of C–N Bonds. Inorganic Chemistry, 2018, 57, 10993-11004.	1.9	9

#	Article	IF	CITATIONS
199	A kinetic fluorometric method for the determination of nucleic acids using a ternary equilibrium system of nucleic acids—iron (III) tetracarboxy phthalocyanine–poly-lysine coupled with the oxidation reaction between hydrogen peroxide and dl-tyrosine. Analytica Chimica Acta, 2004, 514, 247-252.	2.6	8
200	Synthesis of an N-Heterocyclic-Carbene-Stabilized Siladiimide. Inorganic Chemistry, 2016, 55, 4-6.	1.9	8
201	Triflic-Acid-Catalyzed Tandem Allylic Substitution–Cyclization Reaction of Alcohols with Thiophenols—Facile Access to Polysubstituted Thiochromans. ACS Omega, 2018, 3, 8945-8951.	1.6	8
202	Single mercury nanoelectrode: Single nucleus growth on Au nanoelectrode and its sensing application. Sensors and Actuators B: Chemical, 2019, 282, 523-528.	4.0	8
203	Ironâ€Mediated Ringâ€Opening and Rearrangement Cascade Synthesis of Polysubstituted Pyrroles from 4â€Alkenylisoxazoles. Advanced Synthesis and Catalysis, 2020, 362, 1868-1876.	2.1	8
204	Photocatalytic Water Oxidation Directly Using Plasmonics from Single Au Nanowires without the Contact with Semiconductors. ACS Catalysis, 2021, 11, 12940-12946.	5.5	8
205	APPLICATION OF MANGANESE-TETRASULFONATOPHTHALOCYANINE AS A NEW MIMETIC PEROXIDASE IN THE DETERMINATION OF HYDROGEN PEROXIDE BY CHEMILUMINESCENCE REACTION WITH LUMINOL. Analytical Letters, 2001, 34, 1841-1850.	1.0	7
206	Simple and Sensitive Assay for Nucleic Acids Using their Quenching Effect on the Chemiluminescence Reaction Between Luminol and Hydrogen Peroxide with Manganese-Tetrasulfonatophthalocyanine as a New Catalyst. Mikrochimica Acta, 2003, 143, 19-24.	2.5	7
207	Metal Effects on the Asymmetric Synthesis of a New Heterobidentate As/P=S Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 1865-1871.	1.0	7
208	Synthesis and Characterization of a 2,6-Diiminophenylgermanium(II) Hydroxide, Azide, and Triazaphospole. Organometallics, 2013, 32, 5231-5234.	1.1	7
209	Polysubstituted pyrrole derivatives via 1,2-alkenyl migration of novel γ-amino-α,β-unsaturated aldehydes and α-diazocarbonyls. RSC Advances, 2014, 4, 7275.	1.7	7
210	Donor–Acceptor Stabilized Tetra(silanimine). Inorganic Chemistry, 2017, 56, 1609-1615.	1.9	7
211	Permselectivity and Dopamine Detection with Pt Electrodes Covered with PAA-Modified Porous Silicate Film. Journal of the Electrochemical Society, 2019, 166, H19-H24.	1.3	7
212	Metal Coordination Sphere Deformation Induced Highly Stokesâ€Shifted, Ultra Broadband Emission in 2D Hybrid Leadâ€Bromide Perovskites and Investigation of Its Origin. Angewandte Chemie, 2020, 132, 10883-10888.	1.6	7
213	Access to <i>C</i> -Stereogenic PN(<i>sp</i> ²)P Pincer Ligands via Phosphapalladacycle Catalyzed Asymmetric Hydrophosphination. Organometallics, 2021, 40, 682-692.	1.1	7
214	Cysteamine monolayer inducing the formation of platinum nanoclusters for methanol electrocatalytic oxidation. Mikrochimica Acta, 2010, 169, 93-97.	2.5	6
215	Mechanistic Insights into the PdII-Catalyzed ChemoselectiveN-Demethylation vs. Cyclometalation Reactivity Pathways in 1-Aryl-N,N-dimethylethanamines. European Journal of Inorganic Chemistry, 2014, 2014, 5046-5052.	1.0	6
216	A Dimeric NHC–Silicon Monotelluride: Synthesis, Isomerization, and Reactivity. Angewandte Chemie, 2017, 129, 11723-11727.	1.6	6

#	Article	IF	CITATIONS
217	Fluorescence enhancement method for measuring anionic surfactants with a hydrophobic cyanine dye. Analytical and Bioanalytical Chemistry, 2004, 379, 730-4.	1.9	5
218	Annelation of Phosphole-Substituted Fischer Carbene Complexes by Alkynes. Organometallics, 2013, 32, 7482-7486.	1.1	5
219	Efficient Synthesis of Malonate Functionalized Chiral Phosphapalladacycles and their Catalytic Evaluation in Asymmetric Hydrophosphination of Chalcone. European Journal of Inorganic Chemistry, 2018, 2018, 4385-4390.	1.0	5
220	Catalytic and Mechanistic Developments of the Nickel(II) Pincer Complexâ€Catalyzed Hydroarsination Reaction. Chemistry - A European Journal, 2019, 25, 11308-11317.	1.7	5
221	Voltammetric Analysis of Single Nanobubble Formation on Ag and Ag@MoS ₂ Nanoelectrodes. Journal of Physical Chemistry C, 2021, 125, 3073-3080.	1.5	5
222	Chelating Phosphine–N-Heterocyclic Carbene Platinum Complexes via Catalytic Asymmetric Hydrophosphination and Their Cytotoxicity Toward MKN74 and MCF7 Cancer Cell Lines. Inorganic Chemistry, 2021, 60, 17276-17287.	1.9	5
223	Spectrophotometric Method for the Direct Determination of Anionic Surfactant Sodium Dodecyl Benzenesulfonate (SDBS) Using a Hydrophobic Nearâ€Infrared (NIR) Cationic Cyanine Dye Without Solvent Extraction. Analytical Letters, 2004, 37, 711-723.	1.0	4
224	Ion transport through a porphyrin-terminated hybrid bilayer membrane. Electrochimica Acta, 2011, 56, 1076-1081.	2.6	4
225	Intermolecular Insertion of Dialkynylphosphanes into the M-C Bond of Cyclopalladated Rings through Activation by Cyclometallated Amines. European Journal of Inorganic Chemistry, 2012, 2012, 1823-1831.	1.0	4
226	Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd–C Bond Insertion Reactions with Coordinated Alkynylphosphanes. European Journal of Inorganic Chemistry, 2013, 2013, 5487-5494.	1.0	4
227	Challenges in cyclometalation: steric effects leading to competing pathways and η ¹ ,η ² -cyclometalated iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2018, 47, 13046-13051.	1.6	4
228	Macrocycle-Based Metal–Organic Frameworks with NO ₂ -Driven On/Off Switch of Conductivity. ACS Applied Materials & Interfaces, 2021, 13, 27066-27073.	4.0	4
229	Catalytic Asymmetric Hydrophosphination as a Valuable Tool to Access Dihydrophosphinated Curcumin and Its Derivatives. Organometallics, 2021, 40, 3454-3461.	1.1	4
230	High-Performance Electrocatalytic Activity of Pt Nanoprticles/Chitosan 3-D Nanocomposites. Nanoscience and Nanotechnology Letters, 2013, 5, 334-340.	0.4	3
231	Photooxidation of a Twisted Isoquinolinone. Chemistry - an Asian Journal, 2018, 13, 250-254.	1.7	3
232	Synthesis, characterization and photophysical studies of a novel polycyclic diborane. New Journal of Chemistry, 2019, 43, 564-568.	1.4	3
233	Divergent Reactivity of Phosphapalladacycles toward E–H (E = N, P, As) Bonds. Organometallics, 2020, 39, 182-188.	1.1	3
234	Observation of plasmon boosted photoelectrochemical activities on single Au/Cu2O nanoelectrode. Journal Physics D: Applied Physics, 2020, 53, 165102.	1.3	3

#	Article	IF	CITATIONS
235	Electrodeposition of Pt–Fe(III) Nanoclusters on Graphene Modified Glassy Carbon Electrode for Sensitive Detection of Nitrite. Nanoscience and Nanotechnology Letters, 2015, 7, 302-307.	0.4	3
236	Single gold nanowire-based nanosensor for adenosine triphosphate sensing by using in-situ surface-enhanced Raman scattering technique. Talanta, 2022, 249, 123675.	2.9	3
237	Determination of Microamounts of Proteins by Resonance Light Scattering with Copper Phthalocyanine Tetrasulfonic Acid. Spectroscopy Letters, 2005, 38, 419-429.	0.5	2
238	Electrochemical Determination of Hydrogen Peroxide Using Gold–Platinum Bimetallic Nanoparticles Self-Assembled on L-Cysteamine Modified Glassy Carbon Electrode. Nanoscience and Nanotechnology Letters, 2013, 5, 637-642.	0.4	2
239	Preparation of Au nano-tips for in-situ Investigation of Early-Age Localized Corrosion of Three Metals by Scanning Electrochemical Microscope. International Journal of Electrochemical Science, 2017, 12, 3732-3740.	0.5	2
240	Chemoselective Synthesis and Evaluation of β-Oxovinylarsines as an Arsenic Synthetic Precursor. Organometallics, 2020, 39, 271-278.	1.1	2
241	Single gold nanoclusters: Formation and sensing application for isonicotinic acid hydrazide detection. Talanta, 2020, 220, 121376.	2.9	2
242	Palladiumâ€Coated Single Silver Nanowire Electrodes: Sizeâ€Dependent Voltammetry, Enhanced Chemical Stability, and High Performance for Methanol Oxidation. Chemistry - A European Journal, 2020, 26, 10406-10410.	1.7	2
243	Reaction of the Decaosmium Carbido Cluster [Os10(µ6-C)(CO)24]2â^' with Halostibines. Journal of Cluster Science, 2021, 32, 929-935.	1.7	2
244	Mechanosynthesis of Higherâ€Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design**. Angewandte Chemie, 2021, 133, 17622-17631.	1.6	2
245	The Evolution of Terminal Allylphosphinidene Pentacarbonyltungsten Complex. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 908-913.	0.8	1
246	Field‣ffect Devices: Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their Substitutional Symmetry (Adv. Mater. 10/2017). Advanced Materials, 2017, 29, .	11.1	1
247	Chemo/bionanosensors for medical applications. , 2020, , 483-500.		1
248	Investigating the solid-state assembly of pharmaceutically-relevant N,N-dimethyl-O-thiocarbamates in the absence of labile hydrogen bonds. CrystEngComm, 2020, 22, 8290-8298.	1.3	0
249	Rutheniumâ€Based Structural Mimics of the Cofactor of [Fe]â€Hydrogenase: Replacement of the Acyl Moiety with an Nâ€Heterocyclic Carbene. ChemistrySelect, 2020, 5, 10775-10780.	0.7	0