
Sascha Vongehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2597537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Spheres with Controllable Silver Nanoparticle Doping. Journal of Physical Chemistry C, 2010, 114, 977-982.	1.5	264
2	Highly Catalytic Pdâ^'Ag Bimetallic Dendrites. Journal of Physical Chemistry C, 2010, 114, 15005-15010.	1.5	238
3	Ag Dendrite-Based Au/Ag Bimetallic Nanostructures with Strongly Enhanced Catalytic Activity. Langmuir, 2009, 25, 11890-11896.	1.6	184
4	Controllable incorporation of Ag and Ag–Au nanoparticles in carbon spheres for tunable optical and catalytic properties. Journal of Materials Chemistry, 2010, 20, 5436.	6.7	169
5	FeCo ₂ O ₄ submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chemical Communications, 2016, 52, 2624-2627.	2.2	108
6	Hierarchically MnO ₂ –Nanosheet Covered Submicrometer-FeCo ₂ O ₄ -Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4762-4770.	4.0	104
7	A Review on Diverse Silver Nanostructures. Journal of Materials Science and Technology, 2010, 26, 487-522.	5.6	100
8	The Missing Memristor has Not been Found. Scientific Reports, 2015, 5, 11657.	1.6	84
9	High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites. Scientific Reports, 2016, 6, 12883.	1.6	81
10	Versatile synthesis of high surface area multi-metallic nanosponges allowing control over nanostructure and alloying for catalysis and SERS detection. Journal of Materials Chemistry A, 2014, 2, 3648-3660.	5.2	70
11	A high energy density asymmetric all-solid-state supercapacitor based on cobalt carbonate hydroxide nanowire covered N-doped graphene and porous graphene electrodes. Journal of Materials Chemistry A, 2015, 3, 18505-18513.	5.2	68
12	Electropolymerization of PANI coating in nitric acid for corrosion protection of 430 SS. Synthetic Metals, 2011, 161, 1368-1376.	2.1	51
13	Nanoporous carbon spheres and their application in dispersing silver nanoparticles. Applied Surface Science, 2009, 255, 6011-6016.	3.1	47
14	Ethanol-assisted hydrothermal synthesis and electrochemical properties of coral-like β-Co(OH)2 nanostructures. Journal of Solid State Chemistry, 2010, 183, 2166-2173.	1.4	44
15	Silver Nanoparticle-Induced Growth of Nanowire-Covered Porous MnO ₂ Spheres with Superior Supercapacitance. ACS Sustainable Chemistry and Engineering, 2014, 2, 692-698.	3.2	44
16	Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. Journal of Colloid and Interface Science, 2012, 375, 125-133.	5.0	38
17	Effects of hydrothermal temperature on formation and decoloration characteristics of anatase TiO2 nanoparticles. Science China Technological Sciences, 2012, 55, 894-902.	2.0	37
18	Flexible Asymmetric Supercapacitors Based on Nitrogenâ€Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates. ChemSusChem, 2017, 10, 2301-2308.	3.6	37

SASCHA VONGEHR

#	Article	IF	CITATIONS
19	Work functions, ionization potentials, and in between: Scaling relations based on the image-charge model. Physical Review B, 2003, 67, .	1.1	34
20	Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electro-oxidation. Nanotechnology, 2012, 23, 255606.	1.3	32
21	Unusual pickup statistics of high-spin alkali agglomerates on helium nanodroplets. Journal of Chemical Physics, 2003, 119, 11124-11129.	1.2	28
22	3D nitrogen-doped graphene/Co(OH)2-nanoplate composites for high-performance electrochemical pseudocapacitors. RSC Advances, 2014, 4, 61753-61758.	1.7	26
23	Growing ultracold sodium clusters by using helium nanodroplets. Chemical Physics Letters, 2002, 353, 89-94.	1.2	25
24	Silver Doping Mediated Route to Bimetallically Doped Carbon Spheres with Controllable Nanoparticle Distributions. Journal of Physical Chemistry C, 2010, 114, 18338-18346.	1.5	24
25	Facile and rapid synthesis of nickel nanowires and their magnetic properties. Journal of Nanoparticle Research, 2011, 13, 7085-7094.	0.8	24
26	An additive-free electrochemical route to rapid synthesis of large-area copper nano-octahedra on gold film substrates. Electrochemistry Communications, 2009, 11, 867-870.	2.3	23
27	Rapid synthesis of pentagonal silver nanowires with diameter-dependent tensile yield strength. Materials Chemistry and Physics, 2013, 142, 17-26.	2.0	22
28	Scalable Synthesis of Ag Networks with Optimized Sub-monolayer Au-Pd Nanoparticle Covering for Highly Enhanced SERS Detection and Catalysis. Scientific Reports, 2016, 6, 37092.	1.6	19
29	Diameter-controlled synthesis of polycrystalline nickel nanowires and their size dependent magnetic properties. CrystEngComm, 2012, 14, 7209.	1.3	18
30	Large-scale fabrication of porous bulk silver thin sheets with tunable porosity for high-performance binder-free supercapacitor electrodes. RSC Advances, 2015, 5, 45194-45200.	1.7	18
31	Square-wave electrochemical growth of lying three-dimensional silver dendrites with high surface-enhanced Raman scattering activities. Materials Chemistry and Physics, 2011, 129, 594-598.	2.0	17
32	Heterogeneous nucleation and growth of silver nanoparticles on unmodified polystyrene spheres by in situ reduction. Applied Surface Science, 2010, 256, 2654-2660.	3.1	16
33	Co dendrite based bimetallic structures with nanoflake-built Pt covers and strong catalytic activity. Journal of Colloid and Interface Science, 2010, 351, 217-224.	5.0	12
34	Two distinct branch–stem interfacial structures of silver dendrites with vertical and slanted branchings. Chemical Physics Letters, 2009, 477, 179-183.	1.2	9
35	Highly processible and electrochemically active graphene-doped polyacrylic acid/polyaniline allowing the preparation of defect-free thin films for solid-state supercapacitors. RSC Advances, 2015, 5, 62670-62677.	1.7	9
36	Bubble-assisted growth of hollow palladium nanospheres with structure control allowing very thin shells for highly enhanced catalysis. RSC Advances, 2014, 4, 13729-13732.	1.7	8

SASCHA VONGEHR

#	Article	IF	CITATIONS
37	Missing the Memristor. Advanced Science Letters, 2012, 17, 285-290.	0.2	8
38	Layered spherical carbon composites with nanoparticles of different metals grown simultaneously inside and outside. Nanotechnology, 2012, 23, 095603.	1.3	6
39	Quantitative Analysis of Particle Distributions by Comparison with Simulations. Microscopy and Microanalysis, 2011, 17, 61-66.	0.2	5
40	Optimized spherical manganese oxide-ferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors. Nanotechnology, 2015, 26, 374001.	1.3	5
41	Collision statistics of clusters: from Poisson model to Poisson mixtures. Chinese Physics B, 2010, 19, 023602.	0.7	4
42	On the Apparently Fixed Dispersion of Size Distributions. Journal of Computational and Theoretical Nanoscience, 2011, 8, 598-602.	0.4	4
43	Promoting Statistics of Distributions in Nanoscience: The Case of Improving Yield Strength Estimates from Ultrasound Scission. Journal of Physical Chemistry C, 2012, 116, 18533-18537.	1.5	4
44	Shape versus porosity: A systematic survey of cobalt oxide nanosheet calcination from 200 to 900°C. Materials Letters, 2015, 141, 165-167.	1.3	4
45	Exploring inequality violations by classical hidden variables numerically. Annals of Physics, 2013, 339, 81-88.	1.0	3
46	Scalable synthesis and characterization of cobalt sodium tartrate nanowires with adjustable diameters. Journal of Solid State Chemistry, 2011, 184, 3055-3061.	1.4	2
47	Comment on "Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates― ChemSusChem, 2017, 10, 2309-2311.	3.6	2
48	Adapting Nanotech Research as Nano-Micro Hybrids Approach Biological Complexity, A Review. Journal of Materials Science and Technology, 2016, 32, 387-401.	5.6	1
49	Metric Expansion from Microscopic Dynamics in an Inhomogeneous Universe. Communications in Theoretical Physics, 2010, 54, 477-483.	1.1	0
50	Formation of hollow nanoshells in solution-based reactions via collision coalescence of nanobubble–particle systems. Nanotechnology, 2016, 27, 245602.	1.3	0