Shmuel Friedland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2597316/publications.pdf

Version: 2024-02-01

105 105 105 1136 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Nonnegativity for hafnians of certain matrices. Linear and Multilinear Algebra, 2022, 70, 4615-4619.	0.5	1
2	Graph isomorphism and Gaussian boson sampling. Special Matrices, 2021, 9, 166-196.	0.2	20
3	On the Complexity of Finding Tensor Ranks. Communications on Applied Mathematics and Computation, 2021, 3, 281-289.	0.7	1
4	Spectral norm of a symmetric tensor and its computation. Mathematics of Computation, 2020, 89, 2175-2215.	1.1	7
5	Spectral Inequalities for Nonnegative Tensors and Their Tropical Analogues. Vietnam Journal of Mathematics, 2020, 48, 893-928.	0.4	1
6	A note on Hermitian positive semidefinite matrix polynomials. Linear Algebra and Its Applications, 2020, 598, 105-109.	0.4	2
7	Quantum Strassen's theorem. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2020, 23, 2050020.	0.3	6
8	An elementary and unified proof of Grothendieck's inequality. L'Enseignement Mathematique, 2019, 64, 327-351.	0.2	3
9	Grothendieck constant is norm of Strassen matrix multiplication tensor. Numerische Mathematik, 2019, 143, 905-922.	0.9	1
10	Infinite dimensional generalizations of Choi's Theorem. Special Matrices, 2019, 7, 67-77.	0.2	3
11	The tensor rank of tensor product of two three-qubit W states is eight. Linear Algebra and Its Applications, 2018, 543, 1-16.	0.4	23
12	Linear Algebra and Matrices. , 2018, , .		3
13	Tensor and hypergraph. Frontiers of Mathematics in China, 2017, 12, 1277-1277.	0.4	1
14	On best rank-2 and rank-(2,2,2) approximations of order-3 tensors. Linear and Multilinear Algebra, 2017, 65, 1289-1310.	0.5	5
15	Nuclear norm of higher-order tensors. Mathematics of Computation, 2017, 87, 1255-1281.	1.1	105
16	A simple spectral algorithm for recovering planted partitions. Special Matrices, 2017, 5, 139-157.	0.2	2
17	On the extreme points of quantum channels. Linear Algebra and Its Applications, 2016, 498, 553-573.	0.4	6
18	Remarks on the Symmetric Rank of Symmetric Tensors. SIAM Journal on Matrix Analysis and Applications, 2016, 37, 320-337.	0.7	26

#	Article	IF	Citations
19	Equality in Wielandt's eigenvalue inequality. Special Matrices, 2015, 3, .	0.2	О
20	Upper bounds on the number of perfect matchings and directed 2-factors in graphs with given number of vertices and edges. European Journal of Combinatorics, 2015, 45, 132-144.	0.5	7
21	Low-Rank Approximation of Tensors. , 2015, , 377-411.		11
22	On convex optimization problems in quantum information theory. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 505302.	0.7	19
23	Compressive Sensing of Sparse Tensors. IEEE Transactions on Image Processing, 2014, 23, 4438-4447.	6.0	66
24	The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors. Foundations of Computational Mathematics, 2014, 14, 1209-1242.	1.5	41
25	Best rank one approximation of real symmetric tensors can be chosen symmetric. Frontiers of Mathematics in China, 2013, 8, 19-40.	0.4	37
26	Universal Uncertainty Relations. Physical Review Letters, 2013, 111, 230401.	2.9	127
27	Submodular spectral functions of principal submatrices of a hermitian matrix, extensions and applications. Linear Algebra and Its Applications, 2013, 438, 3872-3884.	0.4	7
28	Perron–Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra and Its Applications, 2013, 438, 738-749.	0.4	232
29	On tensors of border rank l in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">C</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi> Amol:mi> Amol:mi</mml:mrow></mml:msup></mml:mrow></mml:math>	l:0.4 l:mo> <mi< td=""><td>ml:¹⁷:n</td></mi<>	ml: ¹⁷ :n
30	Preface to the special issue on tensors and multilinear algebra. Linear Algebra and Its Applications, 2013, 438, 635-638.	0.4	0
31	The Minimum Entropy Output of a Quantum Channel Is Locally Additive. IEEE Transactions on Information Theory, 2013, 59, 603-614.	1.5	8
32	Generalized tensor compressive sensing. , 2013, , .		16
33	On best rank one approximation of tensors. Numerical Linear Algebra With Applications, 2013, 20, 942-955.	0.9	22
34	Nonnegative definite hermitian matrices with increasing principal minors. Special Matrices, 2013, 1, 1-2.	0.2	3
35	A note on the nonzero spectra of irreducible matrices. Linear and Multilinear Algebra, 2012, 60, 1235-1238.	0.5	1
36	A proof of the set-theoretic version of the salmon conjecture. Journal of Algebra, 2012, 356, 374-379.	0.4	19

#	Article	IF	Citations
37	On the generic and typical ranks of 3-tensors. Linear Algebra and Its Applications, 2012, 436, 478-497.	0.4	22
38	On the minimum rank of a graph over finite fields. Linear Algebra and Its Applications, 2012, 436, 1710-1720.	0.4	1
39	The Pressure, Densities and First-order Phase Transitions Associated with Multidimensional SOFT., 2011,, 179-220.		23
40	Nonnegative Matrix Inequalities and their Application to Nonconvex Power Control Optimization. SIAM Journal on Matrix Analysis and Applications, 2011, 32, 1030-1055.	0.7	40
41	An Asymptotic Expansion and Recursive Inequalities for the Monomer-Dimer Problem. Journal of Statistical Physics, 2011, 143, 306-325.	0.5	8
42	Parametric Poincar \tilde{A} ©-Perron theorem with applications. Journal D'Analyse Mathematique, 2011, 113, 197-225.	0.4	4
43	The automorphism group of separable states in quantum information theory. Journal of Mathematical Physics, $2011, 52, \ldots$	0.5	36
44	An explicit expression for the relative entropy of entanglement in all dimensions. Journal of Mathematical Physics, $2011, 52, \ldots$	0.5	24
45	Numerical estimation of the relative entropy of entanglement. Physical Review A, 2010, 82, .	1.0	26
46	The \$1\$-Vertex Transfer Matrix and Accurate Estimation of Channel Capacity. IEEE Transactions on Information Theory, 2010, 56, 3692-3699.	1.5	7
47	Asymptotic positivity of Hurwitz product traces: Two proofs. Linear Algebra and Its Applications, 2010, 432, 1363-1383.	0.4	4
48	Additive Invariants on Quantum Channels and Regularized Minimum Entropy., 2010,, 237-245.		1
49	A note on the graph's resolvent and the multifilar structure. Linear Algebra and Its Applications, 2009, 431, 1367-1379.	0.4	7
50	On the Validations of the Asymptotic Matching Conjectures. Journal of Statistical Physics, 2008, 133, 513-533.	0.5	16
51	An upper bound for the minimum rank of a graph. Linear Algebra and Its Applications, 2008, 429, 1629-1638.	0.4	39
52	Lower Bounds for Partial Matchings in Regular Bipartite Graphs and Applications to the Monomer–Dimer Entropy. Combinatorics Probability and Computing, 2008, 17, 347-361.	0.8	8
53	On the Number of Matchings in Regular Graphs. Electronic Journal of Combinatorics, 2008, 15, .	0.2	23
54	The Maximum Number of Perfect Matchings in Graphs with a Given Degree Sequence. Electronic Journal of Combinatorics, 2008, 15 , .	0.2	26

#	Article	IF	CITATIONS
55	2-Adic valuations of certain ratios of products of factorials and applications. Linear Algebra and Its Applications, 2007, 426, 159-189.	0.4	6
56	The polytope of dual degree partitions. Linear Algebra and Its Applications, 2007, 426, 458-461.	0.4	1
57	Convergence of products of matrices in projective spaces. Linear Algebra and Its Applications, 2006, 413, 247-263.	0.4	8
58	Generalized interval exchanges and the 2–3 conjecture. Central European Journal of Mathematics, 2005, 3, 412-429.	0.7	0
59	Theory of computation of multidimensional entropy with an application to the monomer–dimer problem. Advances in Applied Mathematics, 2005, 34, 486-522.	0.4	43
60	Explicit Construction of Families of LDPC Codes With No <tex>\$4\$</tex> -Cycles. IEEE Transactions on Information Theory, 2004, 50, 2378-2388.	1.5	67
61	p-Metrics on $GL(n,C)/Un$ and their Busemann compactifications. Linear Algebra and Its Applications, 2004, 376, 1-18.	0.4	5
62	Revisiting the Siegel upper half plane I. Linear Algebra and Its Applications, 2004, 376, 19-44.	0.4	7
63	The limit of the product of the parameterized exponentials of two operators. Journal of Functional Analysis, 2004, 210, 436-464.	0.7	2
64	Revisiting the Siegel upper half plane II. Linear Algebra and Its Applications, 2004, 376, 45-67.	0.4	4
65	Generalizations of the odd degree theorem and applications. Israel Journal of Mathematics, 2003, 136, 353-371.	0.4	7
66	Multi-Dimensional Capacity, Pressure and Hausdorff Dimension. The IMA Volumes in Mathematics and Its Applications, 2003, , 183-222.	0.5	5
67	On Cheeger-type inequalities for weighted graphs. Journal of Graph Theory, 2002, 41, 1-17.	0.5	14
68	On spaces of matrices containing a nonzero matrix of bounded rank. Pacific Journal of Mathematics, 2002, 207, 157-176.	0.2	10
69	Discrete Lyapunov exponents and Hausdorff dimension. Ergodic Theory and Dynamical Systems, 2000, 20, 145-172.	0.4	5
70	Corrections to â€~Discrete Lyapunov exponents and Hausdorff dimension' 20 (2000), 145–172. Ergodic Theory and Dynamical Systems, 2000, 20, 1551-1551.	0.4	0
71	Finite and infinite dimensional generalizations of Klyachko's theorem. Linear Algebra and Its Applications, 2000, 319, 3-22.	0.4	15
72	Spaces of symmetric matrices containing a nonzero matrix of bounded rank. Linear Algebra and Its Applications, 1999, 287, 161-170.	0.4	3

#	Article	IF	CITATIONS
73	On the second real eigenvalue of nonegative and Z-matrices. Linear Algebra and Its Applications, 1997, 255, 303-313.	0.4	16
74	On the entropy of Zd subshifts of finite type. Linear Algebra and Its Applications, 1997, 252, 199-220.	0.4	57
75	Invariant measures of groups of homeomorphisms and Auslander's conjecture. Ergodic Theory and Dynamical Systems, 1995, 15, 1075-1089.	0.4	4
76	The Sparse Basis Problem and Multilinear Algebra. SIAM Journal on Matrix Analysis and Applications, 1995, 16, 1-20.	0.7	20
77	On the product of matrix exponentials. Linear Algebra and Its Applications, 1994, 196, 193-205.	0.4	12
78	Lower bounds for the first eigenvalue of certain M-matrices associated with graphs. Linear Algebra and Its Applications, 1992, 172, 71-84.	0.4	15
79	Quadratic forms and the graph isomorphism problem. Linear Algebra and Its Applications, 1991, 150, 423-442.	0.4	11
80	Rationality of certain field of invariant functions. Linear and Multilinear Algebra, 1990, 27, 299-301.	0.5	0
81	A remark on the variation of permanents. Linear and Multilinear Algebra, 1990, 27, 101-103.	0.5	2
82	Additive decomposition of nonnegative matrices with applications to permanents and scalingt. Linear and Multilinear Algebra, 1988, 23, 63-78.	0.5	7
83	Limit eigenvalues of nonnegative matrices. Linear Algebra and Its Applications, 1986, 74, 173-178.	0.4	29
84	Maximality of the monomial group. Linear and Multilinear Algebra, 1985, 18, 1-7.	0.5	9
85	Stable convex sets of matrices. Linear and Multilinear Algebra, 1984, 16, 285-294.	0.5	O
86	On the crossing rule. Communications on Pure and Applied Mathematics, 1984, 37, 19-37.	1.2	75
87	A proof of a generalized van der Waerden conjecture on permanents. Linear and Multilinear Algebra, 1982, 11, 107-120.	0.5	28
88	Variation of tensor powers and spectrat. Linear and Multilinear Algebra, 1982, 12, 81-98.	0.5	30
89	A characterization of normal operators. Israel Journal of Mathematics, 1982, 42, 235-240.	0.4	9
90	Eigenvalue inequalities for products of matrix exponentials. Linear Algebra and Its Applications, 1982, 45, 55-95.	0.4	42

#	Article	IF	CITATIONS
91	Convex spectral functions. Linear and Multilinear Algebra, 1981, 9, 299-316.	0.5	80
92	A Lower Bound for the Permanent of a Doubly Stochastic Matrix. Annals of Mathematics, 1979, 110, 167.	2.1	37
93	Global principle for free-endpoint problems in optimal control and differential games. Journal of Optimization Theory and Applications, 1978, 24, 303-313.	0.8	1
94	On an inverse problem for nonnegative and eventually nonnegative matrices. Israel Journal of Mathematics, 1978, 29, 43-60.	0.4	98
95	Extremal eigenvalue problems. Sociedade Brasileira De Matematica Boletim, Nova Serie, 1978, 9, 13-40.	0.2	14
96	A study of the van der Waerden conjecture and its generalizations. Linear and Multilinear Algebra, 1978, 6, 123-143.	0.5	8
97	Inverse eigenvalue problems. Linear Algebra and Its Applications, 1977, 17, 15-51.	0.4	101
98	Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue. Pacific Journal of Mathematics, 1976, 62, 389-399.	0.2	28
99	Some inequalities for the spectral radius of non-negative matrices and applications. Duke Mathematical Journal, 1975, 42, 459.	0.8	73
100	Extremal eigenvalue problems for convex sets of symmetric matrices and operators. Israel Journal of Mathematics, 1973, 15, 311-331.	0.4	16
101	An Algorithm for Missing Value Estimation for DNA Microarray Data. , 0, , .		8
102	Fast Monte-Carlo Low Rank Approximations for Matrices. , 0, , .		1
103	Fast low rank approximations of matrices and tensors. Electronic Journal of Linear Algebra, 0, 22, .	0.6	15