Andre Dekker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2597001/publications.pdf Version: 2024-02-01

ANDDE DEKKED

#	Article	IF	CITATIONS
1	Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 2012, 48, 441-446.	2.8	3,846
2	Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 2014, 5, 4006.	12.8	3,355
3	Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 2017, 14, 749-762.	27.6	3,216
4	Radiomics: the process and the challenges. Magnetic Resonance Imaging, 2012, 30, 1234-1248.	1.8	1,675
5	Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncology, The, 2020, 21, e18-e28.	10.7	588
6	Repeatability and Reproducibility of Radiomic Features: A Systematic Review. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1143-1158.	0.8	527
7	Three-dimensional photoacoustic imaging of blood vessels in tissue. Optics Letters, 1998, 23, 648.	3.3	449
8	Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncológica, 2013, 52, 1391-1397.	1.8	353
9	Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy 18Fluorodeoxyglucose-PET-CT scan. Radiotherapy and Oncology, 2009, 91, 386-392.	0.6	340
10	Predicting outcomes in radiation oncology—multifactorial decision support systems. Nature Reviews Clinical Oncology, 2013, 10, 27-40.	27.6	329
11	PET-CT–Based Auto-Contouring in Non–Small-Cell Lung Cancer Correlates With Pathology and Reduces Interobserver Variability in the Delineation of the Primary Tumor and Involved Nodal Volumes. International Journal of Radiation Oncology Biology Physics, 2007, 68, 771-778.	0.8	274
12	Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiotherapy and Oncology, 2018, 126, 312-317.	0.6	256
13	Vulnerabilities of radiomic signature development: The need for safeguards. Radiotherapy and Oncology, 2019, 130, 2-9.	0.6	233
14	Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Medical Physics, 2018, 45, 3449-3459.	3.0	214
15	Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma. PLoS ONE, 2015, 10, e0118261.	2.5	207
16	Epicardial left ventricular lead placement for cardiac resynchronization therapy: optimal pace site selection with pressure-volume loops. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 1641-1647.	0.8	189
17	â€~Rapid Learning health care in oncology' – An approach towards decision support systems enabling customised radiotherapy'. Radiotherapy and Oncology, 2013, 109, 159-164.	0.6	175
18	Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Medical Physics, 2018, 45, 4568-4581.	3.0	169

#	Article	IF	CITATIONS
19	Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications. International Journal of Radiation Oncology Biology Physics, 2010, 77, 301-308.	0.8	154
20	Distributed learning: Developing a predictive model based on data from multiple hospitals without data leaving the hospital – A real life proof of concept. Radiotherapy and Oncology, 2016, 121, 459-467.	0.6	139
21	Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recognition, 2013, 46, 692-702.	8.1	138
22	Test–Retest Data for Radiomics Feature Stability Analysis: Generalizable or Study-Specific?. Tomography, 2016, 2, 361-365.	1.8	135
23	Decision support systems for personalized and participative radiation oncology. Advanced Drug Delivery Reviews, 2017, 109, 131-153.	13.7	113
24	Intra-patient variability of tumor volume and tumor motion during conventionally fractionated radiotherapy for locally advanced non-small-cell lung cancer: A prospective clinical study. International Journal of Radiation Oncology Biology Physics, 2006, 66, 748-753.	0.8	105
25	Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries. International Journal of Radiation Oncology Biology Physics, 2017, 99, 344-352.	0.8	102
26	Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiotherapy and Oncology, 2007, 82, 145-152.	0.6	101
27	A semiautomatic CT-based ensemble segmentation of lung tumors: Comparison with oncologists' delineations and with the surgical specimen. Radiotherapy and Oncology, 2012, 105, 167-173.	0.6	99
28	Radiogenomics: Radiobiology Enters the Era of Big Data and Team Science. International Journal of Radiation Oncology Biology Physics, 2014, 89, 709-713.	0.8	99
29	Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clinical and Translational Radiation Oncology, 2017, 4, 24-31.	1.7	98
30	Distributed learning on 20 000+ lung cancer patients – The Personal Health Train. Radiotherapy and Oncology, 2020, 144, 189-200.	0.6	97
31	Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma. Radiotherapy and Oncology, 2012, 102, 38-44.	0.6	93
32	Routine individualised patient dosimetry using electronic portal imaging devices. Radiotherapy and Oncology, 2007, 83, 65-75.	0.6	91
33	Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiologia Medica, 2018, 123, 286-295.	7.7	91
34	A global calibration model for EPIDs used for transit dosimetry. Medical Physics, 2007, 34, 3872-3884.	3.0	86
35	Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy. Medical Physics, 2010, 37, 1401-1407.	3.0	85
36	The next step in patient-specific QA: 3D dose verification of conformal and intensity-modulated RT based on EPID dosimetry and Monte Carlo dose calculations. Radiotherapy and Oncology, 2008, 86, 86-92.	0.6	83

#	Article	IF	CITATIONS
37	18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: A planning study. Radiotherapy and Oncology, 2008, 87, 49-54.	0.6	82
38	Stability of 18F-Deoxyglucose Uptake Locations Within Tumor During Radiotherapy for NSCLC: A Prospective Study. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1402-1407.	0.8	81
39	Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, 765-774.	0.8	81
40	Creating a data exchange strategy for radiotherapy research: Towards federated databases and anonymised public datasets. Radiotherapy and Oncology, 2014, 113, 303-309.	0.6	79
41	A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: A step toward individualized care and shared decision making. Radiotherapy and Oncology, 2014, 112, 37-43.	0.6	77
42	Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy. Medical Physics, 2009, 36, 4268-4276.	3.0	73
43	The ESTRO Breur Lecture 2009. From population to voxel-based radiotherapy: Exploiting intra-tumour and intra-organ heterogeneity for advanced treatment of non-small cell lung cancer. Radiotherapy and Oncology, 2010, 96, 145-152.	0.6	72
44	3D In Vivo Dosimetry Using Megavoltage Cone-Beam CT and EPID Dosimetry. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1580-1587.	0.8	71
45	[18F]fluorodeoxyglucose Uptake Patterns in Lung Before Radiotherapy Identify Areas More Susceptible to Radiation-Induced Lung Toxicity in Non-Small-Cell Lung Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2011, 81, 698-705.	0.8	67
46	International data-sharing for radiotherapy research: An open-source based infrastructure for multicentric clinical data mining. Radiotherapy and Oncology, 2014, 110, 370-374.	0.6	67
47	Machine learning and modeling: Data, validation, communication challenges. Medical Physics, 2018, 45, e834-e840.	3.0	67
48	Radiation Dose Prescription for Non–Small-Cell Lung Cancer According to Normal Tissue Dose Constraints: An In Silico Clinical Trial. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1103-1110.	0.8	66
49	Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer $\hat{a} \in$ Comparison of dose, toxicity and cost-effectiveness. Radiotherapy and Oncology, 2016, 118, 281-285.	0.6	65
50	Tumour delineation and cumulative dose computation in radiotherapy based on deformable registration of respiratory correlated CT images of lung cancer patients. Radiotherapy and Oncology, 2007, 85, 232-238.	0.6	64
51	Increased 18F-deoxyglucose uptake in the lung during the first weeks of radiotherapy is correlated with subsequent Radiation-Induced Lung Toxicity (RILT): A prospective pilot study. Radiotherapy and Oncology, 2009, 91, 415-420.	0.6	64
52	Artificial intelligenceâ€based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance. Medical Physics, 2020, 47, e228-e235.	3.0	64
53	A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images. Medical Physics, 2006, 33, 2426-2434.	3.0	63
54	Radiogenomics: the search for genetic predictors of radiotherapy response. Future Oncology, 2014, 10, 2391-2406.	2.4	63

Andre Dekker

#	Article	IF	CITATIONS
55	Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography. Medical Physics, 2006, 33, 1840-1847.	3.0	62
56	Benefits of a clinical data warehouse with data mining tools to collect data for a radiotherapy trial. Radiotherapy and Oncology, 2013, 108, 174-179.	0.6	62
57	Distributed Analytics on Sensitive Medical Data: The Personal Health Train. Data Intelligence, 2020, 2, 96-107.	1.5	62
58	Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncológica, 2015, 54, 1289-1300.	1.8	59
59	Suction Due to Left Ventricular Assist: Implications for Device Control and Management. Artificial Organs, 2007, 31, 542-549.	1.9	58
60	Comparative evaluation of autocontouring in clinical practice: A practical method using the Turing test. Medical Physics, 2018, 45, 5105-5115.	3.0	58
61	Individualized Radical Radiotherapy of Non–Small-Cell Lung Cancer Based on Normal Tissue Dose Constraints: A Feasibility Study. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1394-1401.	0.8	57
62	Miniature Intracardiac Assist Device Provides More Effective Cardiac Unloading and Circulatory Support During Severe Left Heart Failure Than Intraaortic Balloon Pumping. Chest, 2004, 126, 896-902.	0.8	56
63	Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study. Physics in Medicine and Biology, 2009, 54, 2179-2196.	3.0	55
64	Learning from scanners: Bias reduction and feature correction in radiomics. Clinical and Translational Radiation Oncology, 2019, 19, 33-38.	1.7	54
65	Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer (NSCLC): An exploratory clinical study. Radiotherapy and Oncology, 2009, 91, 393-398.	0.6	53
66	The integration of PET-CT scans from different hospitals into radiotherapy treatment planning. Radiotherapy and Oncology, 2008, 87, 142-146.	0.6	52
67	Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging: A multicentric prospective study with external validation. Radiotherapy and Oncology, 2014, 113, 215-222.	0.6	51
68	Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung cancer patients. Radiotherapy and Oncology, 2013, 109, 100-106.	0.6	50
69	The radiation oncology ontology (<scp>ROO</scp>): Publishing linked data in radiation oncology using semantic web and ontology techniques. Medical Physics, 2018, 45, e854-e862.	3.0	49
70	Respiratory-gated CT as a tool for the simulation of breathing artifacts in PET and PET/CT. Medical Physics, 2008, 35, 576-585.	3.0	47
71	A ventricular-vascular coupling model in presence of aortic stenosis. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1874-H1884.	3.2	46
72	Timing to achieve the highest rate of pCR after preoperative radiochemotherapy in rectal cancer: a pooled analysis of 3085 patients from 7 randomized trials. Radiotherapy and Oncology, 2021, 154, 154-160.	0.6	45

#	Article	IF	CITATIONS
73	Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncológica, 2013, 52, 1398-1404.	1.8	44
74	Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients. Radiotherapy and Oncology, 2020, 143, 88-94.	0.6	44
75	The Benefits and Challenges of Using Patient Decision Aids to Support Shared Decision Making in Health Care. JCO Clinical Cancer Informatics, 2018, 2, 1-10.	2.1	43
76	Stability of radiomic features of apparent diffusion coefficient (ADC) maps for locally advanced rectal cancer in response to image pre-processing. Physica Medica, 2019, 61, 44-51.	0.7	42
77	Machine learning helps identifying volume-confounding effects in radiomics. Physica Medica, 2020, 71, 24-30.	0.7	42
78	Rapid learning in practice: A lung cancer survival decision support system in routine patient care data. Radiotherapy and Oncology, 2014, 113, 47-53.	0.6	41
79	Individualised isotoxic accelerated radiotherapy and chemotherapy are associated with improved long-term survival of patients with stage III NSCLC: A prospective population-based study. Radiotherapy and Oncology, 2012, 102, 228-233.	0.6	40
80	Stereotactic Radiosurgery in the Management of Patients With Brain Metastases of Non-Small Cell Lung Cancer: Indications, Decision Tools and Future Directions. Frontiers in Oncology, 2018, 8, 154.	2.8	40
81	Treatment verification in the presence of inhomogeneities using EPIDâ€based threeâ€dimensional dose reconstruction. Medical Physics, 2007, 34, 2816-2826.	3.0	39
82	Technical Note: Ontologyâ€guided radiomics analysis workflow (Oâ€RAW). Medical Physics, 2019, 46, 5677-5684.	3.0	38
83	Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artificial Intelligence in Medicine, 2020, 105, 101854.	6.5	38
84	An umbrella protocol for standardized data collection (SDC) in rectal cancer: A prospective uniform naming and procedure convention to support personalized medicine. Radiotherapy and Oncology, 2014, 112, 59-62.	0.6	37
85	Distributed radiomics as a signature validation study using the Personal Health Train infrastructure. Scientific Data, 2019, 6, 218.	5.3	37
86	A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features. Physics and Imaging in Radiation Oncology, 2021, 20, 69-75.	2.9	37
87	Towards a modular decision support system for radiomics: A case study on rectal cancer. Artificial Intelligence in Medicine, 2019, 96, 145-153.	6.5	36
88	Dyspnea evolution after high-dose radiotherapy in patients with non-small cell lung cancer. Radiotherapy and Oncology, 2009, 91, 353-359.	0.6	35
89	3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer. Radiotherapy and Oncology, 2010, 94, 188-194.	0.6	35
90	A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy. Acta Oncológica, 2018, 57, 226-230.	1.8	35

#	Article	IF	CITATIONS
91	In Vivo Dosimetry Using a Linear Mosfet-Array Dosimeter to Determine the Urethra Dose In 1251 Permanent Prostate Implants. International Journal of Radiation Oncology Biology Physics, 2009, 73, 314-321.	0.8	33
92	An Approach Toward Automatic Classification of Tumor Histopathology of Non–Small Cell Lung Cancer Based on Radiomic Features. Tomography, 2016, 2, 374-377.	1.8	33
93	Robot-assisted epicardial ablation of the pulmonary veins: is a completed isolation necessary?. European Heart Journal, 2005, 26, 1321-1326.	2.2	32
94	Standardized data collection to build prediction models in oncology: a prototype for rectal cancer. Future Oncology, 2016, 12, 119-136.	2.4	32
95	Intra-Aortic Balloon Pumping in Acute Mitral Regurgitation Reduces Aortic Impedance and Regurgitant Fraction. Shock, 2003, 19, 334-338.	2.1	31
96	Tumor Delineation Based on Time–Activity Curve Differences Assessed With Dynamic Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Rectal Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2009, 73, 456-465.	0.8	31
97	Transition from a simple to a more advanced dose calculation algorithm for radiotherapy of non-small cell lung cancer (NSCLC): Implications for clinical implementation in an individualized dose-escalation protocol. Radiotherapy and Oncology, 2008, 88, 326-334.	0.6	30
98	Calibration of megavoltage coneâ€beam CT for radiotherapy dose calculations: Correction of cupping artifacts and conversion of CT numbers to electron density. Medical Physics, 2008, 35, 849-865.	3.0	29
99	An "in silico―clinical trial comparing free breathing, slow and respiration correlated computed tomography in lung cancer patients. Radiotherapy and Oncology, 2006, 81, 73-80.	0.6	28
100	Time Trends in Nodal Volumes and Motion During Radiotherapy for Patients With Stage III Non-Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 71, 139-144.	0.8	27
101	Development and validation of a patient decision aid for prostate Cancer therapy: from paternalistic towards participative shared decision making. BMC Medical Informatics and Decision Making, 2019, 19, 130.	3.0	26
102	Multicenter <scp>CT</scp> phantoms public dataset for radiomics reproducibility tests. Medical Physics, 2019, 46, 1512-1518.	3.0	26
103	Validation of three deformable image registration algorithms for the thorax. Journal of Applied Clinical Medical Physics, 2013, 14, 19-30.	1.9	25
104	An Evaluation of Atlas Selection Methods for Atlas-Based Automatic Segmentation in Radiotherapy Treatment Planning. IEEE Transactions on Medical Imaging, 2019, 38, 2654-2664.	8.9	23
105	Big Data in radiation therapy: challenges and opportunities. British Journal of Radiology, 2017, 90, 20160689.	2.2	22
106	Current applications of deep-learning in neuro-oncological MRI. Physica Medica, 2021, 83, 161-173.	0.7	22
107	Can Atlas-Based Auto-Segmentation Ever Be Perfect? Insights From Extreme Value Theory. IEEE Transactions on Medical Imaging, 2019, 38, 99-106.	8.9	21
108	External validation of a prognostic model incorporating quantitative PET image features in oesophageal cancer. Radiotherapy and Oncology, 2019, 133, 205-212.	0.6	21

#	Article	IF	CITATIONS
109	Efficacy of a New Intraaortic Propeller Pump vs the Intraaortic Balloon Pumpa. Chest, 2003, 123, 2089-2095.	0.8	20
110	Dose recalculation in megavoltage cone-beam CT for treatment evaluation: Removal of cupping and truncation artefacts in scans of the thorax and abdomen. Radiotherapy and Oncology, 2010, 94, 359-366.	0.6	20
111	The Impact of Clinical Trial Quality Assurance on Outcome in Head and Neck Radiotherapy Treatment. Frontiers in Oncology, 2019, 9, 792.	2.8	20
112	Minimum Data Elements for Radiation Oncology: An American Society for Radiation Oncology Consensus Paper. Practical Radiation Oncology, 2019, 9, 395-401.	2.1	20
113	From multisource data to clinical decision aids in radiation oncology: The need for a clinical data science community. Radiotherapy and Oncology, 2020, 153, 43-54.	0.6	20
114	FAIR ompliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and headâ€Neck1 TCIA collections. Medical Physics, 2020, 47, 5931-5940.	3.0	20
115	Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients. Sensors, 2021, 21, 2083.	3.8	20
116	The enabler right ventricular circulatory support system for beating heart coronary artery bypass graft surgery. Annals of Thoracic Surgery, 1999, 68, 1558-1561.	1.3	19
117	VATE: VAlidation of high TEchnology based on large database analysis by learning machine. Colorectal Cancer, 2014, 3, 435-450.	0.8	19
118	Predicting outcomes in anal cancer patients using multi-centre data and distributed learning – A proof-of-concept study. Radiotherapy and Oncology, 2021, 159, 183-189.	0.6	18
119	Informatics methods to enable sharing of quantitative imaging research data. Magnetic Resonance Imaging, 2012, 30, 1249-1256.	1.8	17
120	External validation of nodal failure prediction models including radiomics in head and neck cancer. Oral Oncology, 2021, 112, 105083.	1.5	17
121	Validation of a rectal cancer outcome prediction model with a cohort of Chinese patients. Oncotarget, 2015, 6, 38327-38335.	1.8	17
122	Systematic review of radiomic biomarkers for predicting immune checkpoint inhibitor treatment outcomes. Methods, 2021, 188, 61-72.	3.8	16
123	In Vivo Dosimetry With a Linear MOSFET Array to Evaluate the Urethra Dose During Permanent Implant Brachytherapy Using Iodine-125. International Journal of Radiation Oncology Biology Physics, 2009, 75, 1266-1272.	0.8	15
124	Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data. Physics in Medicine and Biology, 2013, 58, 7661-7672.	3.0	15
125	Distributed Learning to Protect Privacy inÂMulti-centric Clinical Studies. Lecture Notes in Computer Science, 2015, , 65-75.	1.3	15
126	Prognostic factors analysis for oral cavity cancer survival in the Netherlands and Taiwan using a privacy-preserving federated infrastructure. Scientific Reports, 2020, 10, 20526.	3.3	15

#	Article	IF	CITATIONS
127	CT images with expert manual contours of thoracic cancer for benchmarking autoâ€segmentation accuracy. Medical Physics, 2020, 47, 3250-3255.	3.0	15
128	Right ventricular support for off-pump coronary artery bypass grafting studied with bi-ventricular pressure–volume loops in sheep. European Journal of Cardio-thoracic Surgery, 2001, 19, 179-184.	1.4	14
129	Can we optimize chemo-radiation and surgery in locally advanced stage III non-small cell lung cancer based on evidence from randomized clinical trials? A hypothesis-generating study. Radiotherapy and Oncology, 2009, 93, 389-395.	0.6	14
130	GPU technology is the hope for near realâ€ŧime Monte Carlo dose calculations. Medical Physics, 2015, 42, 1474-1476.	3.0	14
131	User-controlled pipelines for feature integration and head and neck radiation therapy outcome predictions. Physica Medica, 2020, 70, 145-152.	0.7	14
132	Generative models improve radiomics reproducibility in low dose CTs: a simulation study. Physics in Medicine and Biology, 2021, 66, .	3.0	14
133	Prediction of DVH parameter changes due to setup errors for breast cancer treatment based on 2D portal dosimetry. Medical Physics, 2009, 36, 83-94.	3.0	13
134	Dependence of ventilation image derived from 4D CT on deformable image registration and ventilation algorithms. Journal of Applied Clinical Medical Physics, 2013, 14, 150-162.	1.9	13
135	What is the impact of innovation on output in healthcare with a special focus on treatment innovations in radiotherapy? A literature review. British Journal of Radiology, 2017, 90, 20170251.	2.2	13
136	Treatment data and technical process challenges for practical big data efforts in radiation oncology. Medical Physics, 2018, 45, e793-e810.	3.0	13
137	Ontologies in radiation oncology. Physica Medica, 2020, 72, 103-113.	0.7	13
138	Prediction of lymph node metastases using pre-treatment PET radiomics of the primary tumour in esophageal adenocarcinoma: an external validation study. British Journal of Radiology, 2021, 94, 20201042.	2.2	13
139	Minimal invasive epicardial lead implantation: optimizing cardiac resynchronization with a new mapping device for epicardial lead placementâ ⁻ †. European Journal of Cardio-thoracic Surgery, 2004, 25, 894-896.	1.4	12
140	The effect of imputing missing clinical attribute values on training lung cancer survival prediction model performance. Health Information Science and Systems, 2017, 5, 16.	5.2	12
141	A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications. Radiotherapy and Oncology, 2018, 126, 355-361.	0.6	12
142	A Privacy-Preserving Infrastructure for Analyzing Personal Health Data in a Vertically Partitioned Scenario. Studies in Health Technology and Informatics, 2019, 264, 373-377.	0.3	12
143	Methodological quality of machine learning-based quantitative imaging analysis studies in esophageal cancer: a systematic review of clinical outcome prediction after concurrent chemoradiotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2462-2481.	6.4	12
144	Physiologic-insensitive Left Ventricular Assist Predisposes Right-sided Circulatory Failure: A Pilot Simulation and Validation Study. Artificial Organs, 2004, 28, 933-939.	1.9	11

#	Article	IF	CITATIONS
145	Survival Prediction in Lung Cancer Treated with Radiotherapy: Bayesian Networks vs. Support Vector Machines in Handling Missing Data. , 2009, , .		11
146	External validation and transfer learning of convolutional neural networks for computed tomography dental artifact classification. Physics in Medicine and Biology, 2020, 65, 035017.	3.0	11
147	Implementation of the Australian Computerâ€Assisted Theragnostics (AusCAT) network for radiation oncology dataÂextraction, reporting and distributed learning. Journal of Medical Imaging and Radiation Oncology, 2021, 65, 627-636.	1.8	11
148	Using the Personal Health Train for Automated and Privacy-Preserving Analytics on Vertically Partitioned Data. Studies in Health Technology and Informatics, 2018, 247, 581-585.	0.3	11
149	Lung cancer diagnosis using deep attentionâ€based multiple instance learning and radiomics. Medical Physics, 2022, 49, 3134-3143.	3.0	11
150	Synchronously counterpulsating extracorporeal life support enhances myocardial working conditions regardless of systemic perfusion pressure. European Journal of Cardio-thoracic Surgery, 2005, 28, 790-796.	1.4	10
151	External Validation of Radiation-Induced Dyspnea Models on Esophageal Cancer Radiotherapy Patients. Frontiers in Oncology, 2019, 9, 1411.	2.8	10
152	Phased Versus Midventilation Attenuation-Corrected Respiration-Correlated PET for Patients with Non-Small Cell Lung Cancer. Journal of Nuclear Medicine Technology, 2009, 37, 208-214.	0.8	9
153	Implementation of a rapid learning platform: Predicting 2-year survival in laryngeal carcinoma patients in a clinical setting. Oncotarget, 2016, 7, 37288-37296.	1.8	9
154	PRODIGE: PRediction models in prOstate cancer for personalized meDIcine challenGE. Future Oncology, 2017, 13, 2171-2181.	2.4	9
155	Automatic classification of dental artifact status for efficient image veracity checks: effects of image resolution and convolutional neural network depth. Physics in Medicine and Biology, 2020, 65, 015005.	3.0	9
156	Deciphering the glioblastoma phenotype by computed tomography radiomics. Radiotherapy and Oncology, 2021, 160, 132-139.	0.6	9
157	Towards a semantic PACS: Using Semantic Web technology to represent imaging data. Studies in Health Technology and Informatics, 2014, 205, 166-70.	0.3	9
158	Practitioners' views on shared decision-making implementation: A qualitative study. PLoS ONE, 2021, 16, e0259844.	2.5	9
159	Radiomics: a quantitative imaging biomarker in precision oncology. Nuclear Medicine Communications, 2022, 43, 483-493.	1.1	9
160	How efficient is translational research in radiation oncology? The example of a large Dutch academic radiation oncology department. British Journal of Radiology, 2016, 89, 20160129.	2.2	8
161	Prospective validation of pathologic complete response models in rectal cancer: Transferability and reproducibility. Medical Physics, 2017, 44, 4961-4967.	3.0	8
162	External validation of an NTCP model for acute esophageal toxicity in locally advanced NSCLC patients treated with intensity-modulated (chemo-)radiotherapy. Radiotherapy and Oncology, 2018, 129, 249-256.	0.6	8

Andre Dekker

#	Article	IF	CITATIONS
163	[OA071] O-RAW: Ontology-guided radiomics analysis workflow. Physica Medica, 2018, 52, 27-28.	0.7	8
164	Electronic Health Record implementation in a large academic radiotherapy department: Temporarily disruptions but long-term benefits. International Journal of Medical Informatics, 2019, 129, 342-348.	3.3	8
165	Making radiotherapy more efficient with FAIR data. Physica Medica, 2021, 82, 158-162.	0.7	8
166	Exploring Associations of Preoperative Physical Performance With Postoperative Outcomes After Lumbar Spinal Fusion: A Machine Learning Approach. Archives of Physical Medicine and Rehabilitation, 2021, 102, 1324-1330.e3.	0.9	8
167	Prediction models for treatment-induced cardiac toxicity in patients with non-small-cell lung cancer: A systematic review and meta-analysis. Clinical and Translational Radiation Oncology, 2022, 33, 134-144.	1.7	8
168	Generative models improve radiomics performance in different tasks and different datasets: An experimental study. Physica Medica, 2022, 98, 11-17.	0.7	8
169	Future radiotherapy practice will be based on evidence from retrospective interrogation of linked clinical data sources rather than prospective randomized controlled clinical trials. Medical Physics, 2014, 41, 030601.	3.0	7
170	Medicine is a science of uncertainty and an art of probability (Sir W. Osler). Radiotherapy and Oncology, 2015, 114, 132-134.	0.6	7
171	What is the degree of innovation routinely implemented in Dutch radiotherapy centres? A multicentre cross-sectional study. British Journal of Radiology, 2016, 89, 20160601.	2.2	7
172	ASTRO Journals' Data Sharing Policy and Recommended Best Practices. Advances in Radiation Oncology, 2019, 4, 551-558.	1.2	6
173	Clinician perspectives on clinical decision support systems in lung cancer: Implications for shared decisionâ€making. Health Expectations, 2022, 25, 1342-1351.	2.6	6
174	Clinical evaluation of automated segmentation for body composition analysis on abdominal L3 CT slices in polytrauma patients. Injury, 2022, 53, S30-S41.	1.7	6
175	Towards a Clinical Decision Support System for External Beam Radiation Oncology Prostate Cancer Patients: Proton vs. Photon Radiotherapy? A Radiobiological Study of Robustness and Stability. Cancers, 2018, 10, 55.	3.7	5
176	Artificial Intelligence Applications to Improve the Treatment of Locally Advanced Non-Small Cell Lung Cancers. Cancers, 2021, 13, 2382.	3.7	5
177	Radiomics integration into a picture archiving and communication system. Physics and Imaging in Radiation Oncology, 2021, 20, 30-33.	2.9	5
178	Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review. Frontiers in Psychology, 2022, 13, 853472.	2.1	5
179	PD-0496: Multi-centric learning with a federated IT infrastructure: application to 2-year lung-cancer survival prediction. Radiotherapy and Oncology, 2013, 106, S193-S194.	0.6	4
180	Artificial intelligence in oncology. , 2021, , 361-381.		4

180 Artificial intelligence in oncology. , 2021, , 361-381.

#	Article	IF	CITATIONS
181	Implementation of Big Imaging Data Pipeline Adhering to FAIR Principles for Federated Machine Learning in Oncology. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 207-213.	3.7	4
182	Emerging role of artificial intelligence in nuclear medicine. Nuclear Medicine Communications, 2021, 42, 592-601.	1.1	4
183	Shared decision-making for prophylactic cranial irradiation in extensive-stage small-cell lung cancer: an exploratory study. Translational Lung Cancer Research, 2021, 10, 3120-3131.	2.8	4
184	External Validation of a Bayesian Network for Error Detection in Radiotherapy Plans. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 200-206.	3.7	4
185	A Topic-centric Approach to Detecting New Evidences for Evidence-based Medical Guidelines. , 2016, , .		4
186	A systematic review on privacy-preserving distributed data mining. Data Science, 2021, 4, 121-150.	0.9	4
187	Bayesian network structure for predicting local tumor recurrence in rectal cancer patients treated with neoadjuvant chemoradiation followed by surgery. Physics and Imaging in Radiation Oncology, 2022, 22, 1-7.	2.9	4
188	Accurate functional volume definition in PET for radiotherapy treatment planning. , 2008, , .		3
189	The Evidence Driven Dosimetric Constraints From Outcome Analysis of H&N Patients' Data from NRG Oncology RTOG 0522 Trial. International Journal of Radiation Oncology Biology Physics, 2017, 99, S137.	0.8	3
190	PV-0531: Multi-centre evaluation of atlas-based and deep learning contouring using a modified Turing Test. Radiotherapy and Oncology, 2018, 127, S282-S283.	0.6	3
191	EP-2132: Repeatability and reproducibility of radiomic features: results of a systematic review. Radiotherapy and Oncology, 2018, 127, S1174-S1175.	0.6	3
192	Mind Your Data: Privacy and Legal Matters in eHealth. JMIR Formative Research, 2021, 5, e17456.	1.4	3
193	Quantification of theÂspatial distribution of primary tumors in the lung to develop new prognostic biomarkers for locally advanced NSCLC. Scientific Reports, 2021, 11, 20890.	3.3	3
194	Privacy-Preserving Federated Data Analysis: Data Sharing, Protection, and Bioethics in Healthcare. , 2022, , 135-172.		3
195	Une nouvelle méthode de détermination automatique des volumes fonctionnels pour les applications de l'imagerie d'émission en oncologie. Irbm, 2009, 30, 144-149.	5.6	2
196	Analysis of the Suitability of Existing Medical Ontologies for Building a Scalable Semantic Interoperability Solution Supporting Multi-site Collaboration in Oncology. , 2014, , .		2
197	How to measure innovation in radiotherapy: an application of the Delphi method. Journal of Hospital Administration, 2015, 4, 14.	0.1	2
198	Overall survival nomogram for patients with spinal bone metastases (SBM). Clinical and Translational Radiation Oncology, 2021, 28, 48-53.	1.7	2

#	Article	IF	CITATIONS
199	A knowledge graph representation of baseline characteristics for the Dutch proton therapy research registry. Clinical and Translational Radiation Oncology, 2021, 31, 93-96.	1.7	2
200	Robust Estimation of Breast Cancer Incidence Risk in Presence of Incomplete or Inaccurate Information. Asian Pacific Journal of Cancer Prevention, 2020, 21, 2307-2313.	1.2	2
201	Radiomics biopsy signature for predicting survival in patients with spinal bone metastases (SBMs). Clinical and Translational Radiation Oncology, 2022, 33, 57-65.	1.7	2
202	Cardiac working conditions can be optimized by synchronized pulsatile extracorporeal life support. Chest, 2004, 126, 855S.	0.8	1
203	Automated Tools to Facilitate Lung Cancer Outcomes Data-mining. International Journal of Radiation Oncology Biology Physics, 2010, 78, S484.	0.8	1
204	The Combination of Clinical, Dose-Related and Imaging Features Helps Predict Radiation-Induced Normal-Tissue Toxicity in Lung-cancer Patients – An in-silico Trial Using Machine Learning Techniques. , 2011, , .		1
205	Response to "Comment on †Future radiotherapy practice will be based on evidence from retrospective interrogation of linked clinical data sources rather than prospective randomized controlled clinical trials'―[Med. Phys. 41(3) 030601 (3pp.) (2014)]. Medical Physics, 2014, 41, 057102.	3.0	1
206	XNAT imaging platform for BioMedBridges and CTMM TraIT. Journal of Clinical Bioinformatics, 2015, 5, S18.	1.2	1
207	PO-0903: Improving prediction models in the era of rapid learning health care: weighting data to reflect relative importance. Radiotherapy and Oncology, 2015, 115, S465-S466.	0.6	1
208	Radiomics in Magnetic Resonance Imaging for Prognosis in Patients With Rectal Cancer: An Independent External Validation. International Journal of Radiation Oncology Biology Physics, 2016, 96, E180-E181.	0.8	1
209	OC-0068: Can atlas-based auto-contouring ever be perfect?. Radiotherapy and Oncology, 2016, 119, S30-S31.	0.6	1
210	Distributed learning: predictive models based on data from multiple hospitals without data leaving the hospital. Radiotherapy and Oncology, 2016, 118, S53-S54.	0.6	1
211	Volume Bias in Textural Radiomics. International Journal of Radiation Oncology Biology Physics, 2019, 105, S118-S119.	0.8	1
212	Auto Segmentation of Lung in Non-small Cell Lung Cancer Using Deep Convolution Neural Network. Communications in Computer and Information Science, 2020, , 340-351.	0.5	1
213	Case Study for Integration of an Oncology Clinical Site in a Semantic Interoperability Solution based on HL7 v3 and SNOMED-CT: Data Transformation Needs. AMIA Summits on Translational Science Proceedings, 2015, 2015, 71.	0.4	1
214	PD6-1-8: 18-FDG-PET based planning of limited stage small cell lung cancer changes radiotherapy fields: A planning study. Journal of Thoracic Oncology, 2007, 2, S427-S428.	1.1	0
215	D7-05: FDG-PET allows identification of radioresistant areas within the tumor during and after radiation treatment of NSCLC. Journal of Thoracic Oncology, 2007, 2, S411-S412.	1.1	0
216	Time Trends in Nodal CT Volume and Nodal Motion During Radiotherapy for Patients With Stage III Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2007, 69, S490-S491.	0.8	0

#	Article	IF	CITATIONS
217	Voxel Dose Probability: A New Concept for Treatment Planning Incorporating Dose Uncertainties During Treatment Delivery. International Journal of Radiation Oncology Biology Physics, 2007, 69, S696.	0.8	0
218	Improving physical behavior in image registration. , 2008, , .		0
219	Identification of Residual Metabolic-active Areas within Lung Tumors using a Pre-radiotherapy FDG-PET-CT Scan. International Journal of Radiation Oncology Biology Physics, 2009, 75, S611-S612.	0.8	0
220	THE ADDED VALUE OF 3D PET, 4D PET AND A NEW OPTIMAL GATING ALGORITHM FOR TUMOUR DELINEATION IN NSCLC. Radiotherapy and Oncology, 2009, 92, S84.	0.6	0
221	Identification of Residual Metabolic-active Areas within Lung Tumors using a Pre-radiotherapy FDG-PET-CT Scan. International Journal of Radiation Oncology Biology Physics, 2010, 78, S510-S511.	0.8	0
222	Rapid Learning Approach for Decision Support Systems. Physica Medica, 2012, 28, 333.	0.7	0
223	Large scale implementation of EPID dosimetry. Physica Medica, 2012, 28, 341.	0.7	0
224	Statistics of Survival Prediction and Nomogram Development. Medical Radiology, 2013, , 7-28.	0.1	0
225	SP-0293: Radiomics: Advanced image analysis for the prediction of outcome. The example of lung cancer. Radiotherapy and Oncology, 2013, 106, S113.	0.6	0
226	PD-0421: HER3 pathway analysis in radiation plus concurrent cisplatin or anti-EGFR moAb for head and neck cancer. Radiotherapy and Oncology, 2015, 115, S205.	0.6	0
227	EP-1480: Development and validation of a proton decision support system comparing dose, toxicity and cost-effectiveness. Radiotherapy and Oncology, 2015, 115, S804.	0.6	0
228	PO-0701: Automated application of radiation oncology prediction models for clinical decision support. Radiotherapy and Oncology, 2015, 115, S344-S345.	0.6	0
229	Organizational development trajectory of a large academic radiotherapy department set up similarly to a prospective clinical trial: the MAASTRO experience. British Journal of Radiology, 2015, 88, 20140559.	2.2	0
230	PV-0086: Clinical implementation of research within a radiotherapy department. A quality indicator?. Radiotherapy and Oncology, 2016, 119, S41-S42.	0.6	0
231	OC-0257: A Bayesian network model for acute dysphagia prediction in the clinic for NSCLC patients. Radiotherapy and Oncology, 2016, 119, S118-S119.	0.6	0
232	PO-0783: Implementation of a trial outpatient clinic to improve participation and data collection in trials. Radiotherapy and Oncology, 2016, 119, S368-S369.	0.6	0
233	To Improve Personalization of Radiation Therapy Via Scripted In Silico Trials. International Journal of Radiation Oncology Biology Physics, 2016, 96, E670.	0.8	0
234	EP-1683: Fractals in Radiomics: implementation of new features based on fractal analysis. Radiotherapy and Oncology, 2017, 123, S918.	0.6	0

#	Article	IF	CITATIONS
235	PO-0755: Implementation of structural patient reported outcome registration in clinical practice. Radiotherapy and Oncology, 2017, 123, S398.	0.6	0
236	SP-0202: Integration and analysis of complex data for Personalised Radiation Oncology. Radiotherapy and Oncology, 2017, 123, S102-S103.	0.6	0
237	PV-0240: A logistic regression model to predict 30-day mortality: difference between routine and trial data. Radiotherapy and Oncology, 2017, 123, S120-S121.	0.6	0
238	OC-0427: Prediction models in rectal cancer: an update of a pooled analysis of 3770 randomized patients. Radiotherapy and Oncology, 2017, 123, S226.	0.6	0
239	Learning a Cox Model Predicting Survival Based on 3413 Routine Clinical Rectal Cancer Patients Without Sharing Patient Data. International Journal of Radiation Oncology Biology Physics, 2018, 102, S216.	0.8	0
240	Fast and easy mapping of relational data to RDF for rapid learning health care. , 2018, , .		0
241	PO-0928: Normal tissue dose estimation using large databases for automatic plan selection of similar patients. Radiotherapy and Oncology, 2018, 127, S500-S501.	0.6	0
242	EP-1404: Non-linear radiomic signatures characterizing overall survival from non-small cell lung cancer. Radiotherapy and Oncology, 2018, 127, S765-S766.	0.6	0
243	[OA047] Robust radiomic feature selection in magnetic resonance apparent diffusion coefficient maps of rectal cancer. Physica Medica, 2018, 52, 20.	0.7	0
244	Authorization Framework for Medical Data. International Journal of Database Management Systems, 2019, 11, 7-22.	0.3	0
245	Big data for better cancer care. British Journal of Hospital Medicine (London, England: 2005), 2019, 80, 304-305.	0.5	0
246	PD-031 CT-based Radiomics Predicting HPV Status in Head and Neck Squamous Cell Carcinoma. Radiotherapy and Oncology, 2019, 132, 18-19.	0.6	0
247	PV-0314 Machine learning helps identifying relations and confounding factors in radiomics-based models. Radiotherapy and Oncology, 2019, 133, S162-S163.	0.6	0
248	PO-0959 Robust features selection in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients. Radiotherapy and Oncology, 2019, 133, S520-S521.	0.6	0
249	PO-0951 How to build accurate prediction models without sharing patient data across hospitals?. Radiotherapy and Oncology, 2019, 133, S514-S515.	0.6	0
250	PO-0953 Are quality assurance phantoms useful to assess radiomics reproducibility? A multi-center study. Radiotherapy and Oncology, 2019, 133, S515-S516.	0.6	0
251	PO-0958 Mortality Risk Stratification Model based on Radiomics Only: Analysis of Public Open Access HNC Data. Radiotherapy and Oncology, 2019, 133, S519-S520.	0.6	0
252	PO-0855 Development and Validation of a Prostate Cancer Patient Decision Aid: Towards Participative Medicine. Radiotherapy and Oncology, 2019, 133, S450-S451.	0.6	0

#	Article	IF	CITATIONS
253	EP-1898 Encouraging the use of decision support systems in routine clinical practice. Radiotherapy and Oncology, 2019, 133, S1031-S1032.	0.6	0
254	163 Application of Novel Radiotherapy and Imaging Features for Head and Neck Patient Locoregional Failure Predictions. Radiotherapy and Oncology, 2019, 139, S70.	0.6	0
255	SU-FF-T-149: IMRT Pre-Treatment Verification with Ionization Chamber, Film and EPID: Quality Vs. Time Consumption. Medical Physics, 2005, 32, 1984-1984.	3.0	Ο
256	PD5-1-7: Time trends in nodal CT volume and nodal motion during radiotherapy for patients with stage III non-small cell lung cancer. Journal of Thoracic Oncology, 2007, 2, S473-S474.	1.1	0
257	How Should Data Be Shared and Rapid Learning Health Care Promoted?. , 2012, , 355-364.		0
258	A Comparison of Ventilation Methods Using 4D-CT and Different Deformable Image Registration Algorithms. IFMBE Proceedings, 2013, , 1746-1749.	0.3	0
259	SU-E-J-66: Effects of Noise in 4D-CT On Deformable Image Registration and Derived Ventilation Data. Medical Physics, 2013, 40, 165-165.	3.0	Ο
260	SUâ€Eâ€Tâ€23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support. Medical Physics, 2015, 42, 3335-3336.	3.0	0
261	Cancer registry and big data exchange. , 2019, , 153-180.		Ο
262	A Feature-Pooling and Signature-Pooling Method for Feature Selection for Quantitative Image Analysis: Application to a Radiomics Model for Survival in Glioma. Lecture Notes in Computer Science, 2020, , 70-80.	1.3	0
263	Are all shortcuts in encoder–decoder networks beneficial for CT denoising?. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 59-66.	1.9	0
264	Segmentation Uncertainty Estimation as a Sanity Check for Image Biomarker Studies. Cancers, 2022, 14, 1288.	3.7	0