Kebin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596984/publications.pdf

Version: 2024-02-01

218381 315357 4,957 37 26 38 citations h-index g-index papers 38 38 38 7093 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	2,2,2-Trifluoroethyl trifluoroacetate as effective electrolyte additive for uniform Li deposition in lithium metal batteries. Chemical Engineering Journal, 2022, 435, 134897.	6.6	12
2	Surfaceâ€Confined Synthesis of Ultrafine Ptâ€Rare Earth Nanoalloys on Nâ€Functionalized Supports. Advanced Functional Materials, 2022, 32, .	7.8	10
3	Modulation of the superficial electronic structure via metal–support interaction for H2 evolution over Pd catalysts. Chemical Science, 2021, 12, 3245-3252.	3.7	6
4	Enhancing electrocatalytic hydrogen evolution of WTe2 by formation of amorphous phosphate nanoshells. Electrochimica Acta, 2021, 385, 138409.	2.6	6
5	Oxygen vacancy-enriched Co3O4 as lithiophilic medium for ultra-stable anode of lithium metal batteries. Journal of Alloys and Compounds, 2021, 888, 161553.	2.8	13
6	Hierarchical Nanosheet Arrays of Metal Oxides Guide Uniform Deposition for Lithium Anodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 102-110.	3.2	14
7	Graphite Nanoarrays-Confined Fe and Co Single-Atoms within Graphene Sponges as Bifunctional Oxygen Electrocatalyst for Ultralong Lasting Zinc-Air Battery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40415-40425.	4.0	27
8	Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Applied Catalysis B: Environmental, 2020, 268, 118747.	10.8	140
9	Crystalline/Amorphous Co ₂ P@FePO ₄ Core/Shell Nanoheterostructures Supported on Porous Carbon Microspheres as Efficient Oxygen Reduction Electrocatalysts. Chemistry of Materials, 2019, 31, 8026-8034.	3.2	33
10	Topological self-template directed synthesis of multi-shelled intermetallic Ni ₃ Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science, 2019, 10, 614-619.	3.7	31
11	Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn-Air battery. Carbon, 2019, 145, 38-46.	5.4	38
12	Hierarchically porous carbon microspheres with fully open and interconnected super-macropores for air cathodes of Zn-Air batteries. Carbon, 2018, 136, 54-62.	5.4	30
13	Wrinkle-free atomically thin CdS nanosheets for photocatalytic hydrogen evolution. Nanotechnology, 2018, 29, 215402.	1.3	26
14	Fe2P nanoparticles as highly efficient freestanding co-catalyst for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 5337-5345.	3.8	42
15	50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11, 905-912.	5. 8	48
16	MOFâ€Confined Subâ€2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as Highâ€Performance Catalysts for Selective Hydrogenation of Acetylene. Advanced Materials, 2018, 30, e1801878.	11.1	133
17	Enhanced photocatalytic oxygen evolution activity by formation of Ir@IrO _x (OH) _y core–shell heterostructure. Nanotechnology, 2018, 29, 405705.	1.3	8
18	Enhancing H2 evolution by optimizing H adatom combination and desorption over Pd nanocatalyst. Nano Energy, 2017, 33, 410-417.	8.2	43

#	Article	IF	CITATIONS
19	Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS ₂ /CdS nanosheet-based van der Waals heterostructures. Nanoscale, 2017, 9, 6638-6642.	2.8	176
20	Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery. Journal of Colloid and Interface Science, 2017, 502, 16-23.	5.0	65
21	Morphological Effects of Gold Clusters on the Reactivity of Ceria Surface Oxygen. ACS Catalysis, 2015, 5, 2873-2881.	5.5	69
22	Support Morphology-Dependent Catalytic Activity of Pd/CeO ₂ for Formaldehyde Oxidation. Environmental Science & Eamp; Technology, 2015, 49, 8675-8682.	4.6	309
23	High Porosity Supermacroporous Polystyrene Materials with Excellent Oil–Water Separation and Gas Permeability Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6745-6753.	4.0	127
24	Gold catalyzed hydrogenations of small imines and nitriles: enhanced reactivity of Au surface toward H ₂ via collaboration with a Lewis base. Chemical Science, 2014, 5, 1082-1090.	3.7	91
25	Crystal plane effects of nano-CeO ₂ on its antioxidant activity. RSC Advances, 2014, 4, 50325-50330.	1.7	38
26	Hydrodeoxygenation of vanillin as a bio-oil model over carbonaceous microspheres-supported Pd catalysts in the aqueous phase and Pickering emulsions. Green Chemistry, 2014, 16, 2636-2643.	4.6	110
27	Strong electron-conjugation interaction facilitates electron transfer of hemoglobin by Ce(OH)3 nanorods. RSC Advances, 2013, 3, 6339.	1.7	10
28	Synthesis of water-soluble chitosan-coated nanoceria with excellent antioxidant properties. RSC Advances, 2013, 3, 6833.	1.7	31
29	Manipulation of the Reducibility of Ceriaâ€Supported Au Catalysts by Interface Engineering. ChemCatChem, 2013, 5, 1308-1312.	1.8	11
30	Hydroxyl Radical Promotes the Direct Iodination of Aromatic Compounds with Iodine in Water: A Combined Experimental and Theoretical Study. Advanced Synthesis and Catalysis, 2012, 354, 720-729.	2.1	13
31	Catalysis Based on Nanocrystals with Wellâ€Defined Facets. Angewandte Chemie - International Edition, 2012, 51, 602-613.	7.2	729
32	Multifunctional amphiphilic carbonaceous microcapsules catalyze water/oil biphasic reactions. Chemical Communications, 2011, 47, 11903.	2.2	56
33	Amphiphilic Hollow Carbonaceous Microspheres with Permeable Shells. Angewandte Chemie - International Edition, 2010, 49, 4223-4227.	7.2	95
34	Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. Journal of the American Chemical Society, 2009, 131, 3140-3141.	6.6	1,058
35	Au/LaVO4 Nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Research, 2008, 1, 46-55.	5.8	77
36	Highly Reducible CeO2Nanotubes. Chemistry of Materials, 2007, 19, 1215-1217.	3.2	211

#	Article	lF	CITATIONS
37	Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis, 2005, 229, 206-212.	3.1	1,010