Yanqiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596969/publications.pdf

Version: 2024-02-01

		159585	182427
75	2,813	30	51
papers	citations	h-index	g-index
75	75	75	3493
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interface Engineering and Anion Engineering of Moâ€Based Heterogeneous Electrocatalysts for Hydrogen Evolution Reaction. Energy and Environmental Materials, 2023, 6, .	12.8	30
2	Interface engineering of the MoS2/NiS2/CoS2 nanotube as a highly efficient bifunctional electrocatalyst for overall water splitting. Materials Today Nano, 2022, 17, 100156.	4.6	14
3	Double shelled hollow CoS2@MoS2@NiS2 polyhedron as advanced trifunctional electrocatalyst for zinc-air battery and self-powered overall water splitting. Journal of Colloid and Interface Science, 2022, 610, 653-662.	9.4	44
4	Facile synthesis of carbon coated cobalt-cobalt molybdenum carbide as advanced bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Journal of Alloys and Compounds, 2022, 897, 163203.	5 . 5	17
5	Current progress of metal sulfides derived from metal–organic frameworks for advanced electrocatalysis: potential electrocatalysts with diverse applications. Journal of Materials Chemistry A, 2022, 10, 1617-1641.	10.3	51
6	Defect and interface engineering in metal sulfide catalysts for the electrocatalytic nitrogen reduction reaction: a review. Journal of Materials Chemistry A, 2022, 10, 6927-6949.	10.3	39
7	Petal-like Fe _{<i>x</i>} S _{<i>y</i>} /WS ₂ Heterojunction Nanosheets as an Electrocatalyst for Highly Effective Hydrogen Evolution Reaction. Energy &	5.1	9
8	Engineering strategies for boosting the nitrogen reduction reaction performance of MoS2-based electrocatalysts. Materials Today Nano, 2022, 18, 100202.	4.6	5
9	Nanotube assembled coral-like ZnS@N, S co-doped carbon: A sodium-ion batteries anode material with outstanding stability and rate performance. Applied Surface Science, 2021, 535, 147748.	6.1	25
10	Singleâ€Atom and Dualâ€Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives. ChemSusChem, 2021, 14, 73-93.	6.8	76
11	Interface engineering of transitional metal sulfide–MoS ₂ heterostructure composites as effective electrocatalysts for water-splitting. Journal of Materials Chemistry A, 2021, 9, 2070-2092.	10.3	136
12	Theoretical study of the influence of doped oxygen group elements on the properties of organic semiconductors. Nanoscale Advances, 2021, 3, 3100-3106.	4.6	0
13	Investigation of the interfacial behavior of organics on sulfide semiconductor surfaces by quantum chemical calculations and molecular dynamics simulations. New Journal of Chemistry, 2021, 45, 19321-19328.	2.8	0
14	Current progress of molybdenum carbide-based materials for electrocatalysis: potential electrocatalysts with diverse applications. Materials Today Chemistry, 2021, 19, 100411.	3.5	23
15	Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2021, 543, 148804.	6.1	53
16	<scp> CO ₂ </scp> electroreduction by <scp>AuCu</scp> bimetallic clusters: A first principles study. International Journal of Energy Research, 2021, 45, 18684-18694.	4.5	9
17	Mechanism of Enhancement in Perovskite Solar Cells by Organosulfur Amine Constructed 2D/3D Heterojunctions. Journal of Physical Chemistry C, 2021, 125, 16428-16434.	3.1	23
18	Hierarchical MoO ₄ ^{2–} Intercalating α-Co(OH) ₂ Nanosheet Assemblies: Green Synthesis and Ultrafast Reconstruction for Boosting Electrochemical Oxygen Evolution. Energy & Description of Evolution. Energy & Description of Evolution.	5.1	13

#	Article	IF	CITATIONS
19	Confined Synthesis of N, P Co–Doped 3D Hierarchical Carbons as Highâ€Efficiency Oxygen Reduction Reaction Catalysts for Zn–Air Battery. ChemElectroChem, 2020, 7, 4131-4135.	3.4	13
20	Metal–organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries: current progress and prospects. Chemical Science, 2020, 11, 11646-11671.	7.4	60
21	High-Quality Inorganic Chemistry Teaching During COVID-19. Journal of Chemical Education, 2020, 97, 2945-2949.	2.3	7
22	Two-dimensional CuAg/Ti ₃ C ₂ catalyst for electrochemical synthesis of ammonia under ambient conditions: a combined experimental and theoretical study. Sustainable Energy and Fuels, 2020, 4, 5061-5071.	4.9	26
23	Bimetallic cobalt molybdenum carbide–cobalt composites as superior bifunctional oxygen electrocatalysts for Zn–air batteries. Materials Today Energy, 2020, 18, 100565.	4.7	20
24	A facile and general procedure to hyperporous carbons: carbonization of organic zinc salts. Materials Today Energy, 2020, 17, 100446.	4.7	4
25	Porous carbon derived from metal organic framework for gas storage and separation: The size effect. Inorganic Chemistry Communication, 2020, 118, 107999.	3.9	30
26	Morphology engineering of cobalt embedded in nitrogen doped porous carbon as bifunctional oxygen electrocatalyst for Zn-air battery. Materials Today Energy, 2020, 17, 100455.	4.7	12
27	A novel strategy to synthesize NiCo layered double hydroxide nanotube from metal organic framework composite for high-performance supercapacitor. Journal of Alloys and Compounds, 2020, 831, 154794.	5.5	39
28	Intermediate-Controlled Interfacial Engineering for Stable and Highly Efficient Carbon-Based PSCs. ACS Applied Materials & Diterfaces, 2020, 12, 34479-34486.	8.0	9
29	Recent Progress in MXeneâ€Based Materials: Potential Highâ€Performance Electrocatalysts. Advanced Functional Materials, 2020, 30, 2003437.	14.9	181
30	Several economical and eco-friendly bio-carbon electrodes for highly efficient perovskite solar cells. Carbon, 2020, 162, 267-272.	10.3	48
31	Facile synthesis of ZnS decorated N, S co-doped carbon polyhedron as high efficiency oxygen reduction reaction catalyst for Zn-air battery. Applied Surface Science, 2020, 509, 145367.	6.1	22
32	Preparation of AgCl photocatalyst by recovering silver from discarded cyanide-free silver electrodeposition bath: insightful investigation of quantum chemical calculations and experiment. lonics, 2019, 25, 2419-2426.	2.4	4
33	A novel strategy to synthesize CoMoO4 nanotube as highly efficient oxygen evolution reaction electrocatalyst. Catalysis Communications, 2019, 131, 105800.	3.3	20
34	2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Research, 2019, 12, 2774-2780.	10.4	64
35	Enhancing oxygen evolution reaction electrocatalytic performance with vanadium-doped Co/CoO encapsulated in carbon nanorod. Inorganic Chemistry Communication, 2019, 103, 1-5.	3.9	10
36	Alternative electrodes for HTMs and noble-metal-free perovskite solar cells: 2D MXenes electrodes. RSC Advances, 2019, 9, 34152-34157.	3.6	39

#	Article	IF	Citations
37	Nanowireâ€Templated Synthesis of FeN x â€Decorated Carbon Nanotubes as Highly Efficient, Universalâ€pH, Oxygen Reduction Reaction Catalysts. Chemistry - A European Journal, 2019, 25, 2637-2644.	3.3	16
38	Killing Two Birds with One Stone: A Highly Active Tubular Carbon Catalyst with Effective N Doping for Oxygen Reduction and Hydrogen Evolution Reactions. Catalysis Letters, 2019, 149, 486-495.	2.6	12
39	A facile approach for the fabrication of loading-controlled Ag/C foam catalyst. Ionics, 2019, 25, 361-365.	2.4	0
40	Efficient oxygen reduction reaction catalyst derived from ZnO@ zeolite imidazolate framework nanowire composite. Inorganic Chemistry Communication, 2019, 101, 23-26.	3.9	10
41	Theoretical and experimental studies of the influence of microstructure on anti-tarnish ability of cyanide-free silver deposit. Ionics, 2019, 25, 849-857.	2.4	7
42	Effective Oxygen Reduction and Evolution Catalysts Derived from Metal Organic Frameworks by Optimizing Active Sites. Journal of the Electrochemical Society, 2018, 165, F158-F165.	2.9	13
43	One-dimensional MoO ₂ –Co ₂ Mo ₃ O ₈ @C nanorods: a novel and highly efficient oxygen evolution reaction catalyst derived from metal–organic framework composites. Chemical Communications, 2018, 54, 2739-2742.	4.1	61
44	Incredible PCE enhancement induced by damaged perovskite layers: deeply understanding the working principle of additives in bulk heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4365-4373.	10.3	16
45	In-Situ Grown Ni(OH) ₂ Nanosheets on Ni Foam for Hybrid Supercapacitors with High Electrochemical Performance. Journal of the Electrochemical Society, 2018, 165, A882-A890.	2.9	17
46	Synthesis of Coâ€"B in porous carbon using a metalâ€"organic framework (MOF) precursor: A highly efficient catalyst for the oxygen evolution reaction. Electrochemistry Communications, 2018, 86, 140-144.	4.7	86
47	Theoretical and Experimental Studies of the Prevention Mechanism of Organic Inhibitors on Silver Anti-Tarnish. Journal of the Electrochemical Society, 2018, 165, H725-H732.	2.9	5
48	Synthesis of Fe, Co Incorporated in P-Doped Porous Carbon Using a Metal-Organic Framework (MOF) Precursor as Stable Catalysts for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2018, 165, G3080-G3086.	2.9	14
49	Low-cost, large-scale, one-pot synthesis of C/Ni3(NO3)2(OH)4 composites for high performance supercapacitor. Materials Chemistry and Physics, 2018, 217, 291-299.	4.0	11
50	The synergetic effect of h-BN shells and subsurface B in CoB _x @h-BN nanocatalysts for enhanced oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 10644-10648.	10.3	28
51	Seamless Interfacial Formation by Solution-Processed Amorphous Hydroxide Semiconductor for Highly Efficient Electron Transport. ACS Applied Energy Materials, 2018, 1, 4564-4571.	5.1	16
52	In situ fabrication of 2D SnS2 nanosheets as a new electron transport layer for perovskite solar cells. Nano Research, 2018, 11, 5913-5923.	10.4	62
53	Facile synthesis of N, S co-doped porous carbons from a dual-ligand metal organic framework for high performance oxygen reduction reaction catalysts. Electrochimica Acta, 2017, 254, 148-154.	5.2	31
54	In Situ Fabrication of Integrated Electrode of Perovskite Solar Cells. Chemistry Letters, 2017, 46, 1687-1690.	1.3	6

#	Article	IF	CITATIONS
55	<i>In Situ</i> Fabrication of Nanoepitaxial TiO ₂ Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect. Solar Rrl, 2017, 1, 1700064.	5. 8	7
56	Oneâ€Stage Method for Fabricating Superhydrophobic Stainless Steel Surface and Its Antiâ€Corrosion Performance. Advanced Engineering Materials, 2017, 19, 1600511.	3.5	25
57	Light engineering for bifacial transparent perovskite solar cells with high performance. Optical Engineering, 2017, 56, 1.	1.0	7
58	Catalytic activities enhanced by abundant structural defects and balanced N distribution of N-doped graphene in oxygen reduction reaction. Journal of Power Sources, 2016, 306, 85-91.	7.8	59
59	Enhanced photoactivities of TiO 2 particles induced by bio-inspired micro-nanoscale substrate. Journal of Colloid and Interface Science, 2016, 470, 10-13.	9.4	3
60	Transition metal selenides as efficient counter-electrode materials for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 28985-28992.	2.8	59
61	Metal Oxide/Carbide/Carbon Nanocomposites: In Situ Synthesis, Characterization, Calculation, and their Application as an Efficient Counter Electrode Catalyst for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2013, 3, 1407-1412.	19.5	157
62	Influence of the benzo[d]thiazole-derived π-bridges on the optical and photovoltaic performance of D–π–A dyes. Dyes and Pigments, 2013, 96, 619-625.	3.7	31
63	Ptâ€like Behavior of Highâ€Performance Counter Electrodes Prepared from Binary Tantalum Compounds Showing High Electrocatalytic Activity for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 411-416.	6.8	132
64	Solidâ€State Synthesis of ZnO Nanostructures for Quasiâ€Solid Dyeâ€Sensitized Solar Cells with High Efficiencies up to 6.46%. Advanced Materials, 2013, 25, 4413-4419.	21.0	72
65	Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2013, 91, 302-306.	5.2	73
66	Synthesis and photoelectric properties of an organic dye containing benzo[1,2-b:4,5-b′]dithiophene for dye-sensitized solar cells. Chinese Chemical Letters, 2013, 24, 149-152.	9.0	11
67	Platinumâ€Free Catalysts as Counter Electrodes in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2012, 5, 1343-1357.	6.8	194
68	Enhanced Photoconversion Efficiency of Allâ€Flexible Dyeâ€Sensitized Solar Cells Based on a Ti Substrate with TiO ₂ Nanoforest Underlayer. Small, 2012, 8, 3427-3431.	10.0	53
69	Optimization of the Performance of Dyeâ€6ensitized Solar Cells Based on Ptâ€Like TiC Counter Electrodes. European Journal of Inorganic Chemistry, 2012, 2012, 3557-3561.	2.0	29
70	SnSâ€Quantum Dot Solar Cells Using Novel TiC Counter Electrode and Organic Redox Couples. Chemistry - A European Journal, 2012, 18, 7862-7868.	3.3	39
71	A New Type of Dyeâ€Sensitized Solar Cell with a Multilayered Photoanode Prepared by a Filmâ€Transfer Technique. Advanced Materials, 2011, 23, 2764-2768.	21.0	80
72	Performance of Dyeâ€6ensitized Solar Cells Based on MWCNT/TiO _{2â€"<i>>x</i>} N <i>_x</i> Nanocomposite Electrodes. European Journal of Inorganic Chemistry, 2011, 2011, 1776-1783.	2.0	8

Yanqıang Li

#	Article	IF	CITATION
73	Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 4611-4617.	5.2	86
74	Highly efficient dye-sensitized solar cells based on nitrogen-doped titania with excellent stability. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 180-187.	3.9	57
75	High-efficiency flexible dye-sensitized solar cells fabricated by a novel friction-transfer technique. Electrochemistry Communications, 2010, 12, 1000-1003.	4.7	45