Tadeusz Kulik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the dependence of spin-spin correlations on the thermal treatment of nanocrystalline materials. Physical Review B, 1995, 51, 3581-3586.	3.2	226
2	Exchange interactions through amorphous paramagnetic layers in ferromagnetic nanocrystals. Physical Review B, 1994, 49, 7064-7067.	3.2	206
3	Nanocrystallization of metallic glasses. Journal of Non-Crystalline Solids, 2001, 287, 145-161.	3.1	200
4	Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations. Journal of Alloys and Compounds, 2016, 674, 455-462.	5.5	153
5	Demystifying the sluggish diffusion effect in high entropy alloys. Journal of Alloys and Compounds, 2019, 783, 193-207.	5.5	153
6	Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (xÂ=Â0; 0.5; 1). Intermetallics, 2017, 84, 52-61.	3.9	140
7	Superparamagnetism in a nanocrystalline Fe-based metallic glass. Physical Review B, 1992, 46, 14594-14597.	3.2	119
8	Studies of "sluggish diffusion―effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. Journal of Alloys and Compounds, 2018, 731, 920-928.	5.5	109
9	Nanocrystalline FeAl intermetallic produced by mechanical alloying followed by hot-pressing consolidation. Intermetallics, 2007, 15, 201-205.	3.9	89
10	Phase transformations during mechanical alloying of Fe–50% Al and subsequent heating of the milling product. Journal of Alloys and Compounds, 2006, 424, 119-127.	5.5	83
11	A highâ€performance hysteresis loop tracer. Journal of Applied Physics, 1993, 73, 6855-6857.	2.5	71
12	Nanocrystalline FeAl matrix composites reinforced with TiC obtained by hot-pressing consolidation of mechanically alloyed powders. Intermetallics, 2007, 15, 1377-1383.	3.9	70
13	The FeAl–30%TiC nanocomposite produced by mechanical alloying and hot-pressing consolidation. Intermetallics, 2002, 10, 371-376.	3.9	67
14	Nanocrystalline Al–Fe intermetallics – light weight alloys with high hardness. Intermetallics, 2010, 18, 47-50.	3.9	60
15	Formation of nickel aluminides by mechanical alloying and thermodynamics of interaction. Journal of Alloys and Compounds, 2002, 336, 196-201.	5.5	54
16	The influence of copper, niobium and tantalum additions on the crystallization of Feî—,Siî—,B-based glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 159, 95-101.	5.6	46
17	Correlation between structure and the magnetic properties of amorphous and nanocrystalline Fe73.5Cu1Nb3Si22.5â^'xBx alloys. Journal of Magnetism and Magnetic Materials, 1994, 133, 310-313.	2.3	45
18	Nanocrystalline and amorphous Al–Fe alloys containing 60–85% of Al synthesised by mechanical alloying and phase transformations induced by heating of milling products. Materials Chemistry and Physics, 2009, 116, 631-637.	4.0	45

#	Article	IF	CITATIONS
19	Nanocrystalline Ni3Al alloy produced by mechanical alloying of nickel aluminides and hot-pressing consolidation. Journal of Alloys and Compounds, 2007, 434-435, 344-347.	5.5	43
20	Flash annealing nanocrystallization of Feî—,Siî—,B-based glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 157, 107-112.	5.6	41
21	Nanocrystalline FeAl–TiN composites obtained by hot-pressing consolidation of reactively milled powders. Scripta Materialia, 2007, 57, 553-556.	5.2	39
22	Effect of Cu, Nb and Ta addition on the structural and magnetic properties of amorphous Fe–Si–B alloys. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 492-494.	2.3	35
23	FeAl–TiN nanocomposite produced by reactive ball milling and hot-pressing consolidation. Scripta Materialia, 2003, 48, 1489-1494.	5.2	32
24	High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying. Materials Letters, 2018, 232, 160-162.	2.6	32
25	Size dependence of coercivity in nanostructured soft alloys. Physical Review B, 2004, 69, .	3.2	29
26	Influence of structure on coercivity in nanocrystalline (Fe1â^'xCox)86Hf7B6Cu1 alloys. Physica B: Condensed Matter, 2005, 370, 151-157.	2.7	28
27	Nanocomposites obtained by mechanical alloying in Fe–Al–Ti–C system. Journal of Alloys and Compounds, 2008, 448, 227-233.	5.5	28
28	Bulk amorphous Al85Fe15 alloy and Al85Fe15-B composites with amorphous or nanocrystalline-matrix produced by consolidation of mechanically alloyed powders. Intermetallics, 2011, 19, 1243-1249.	3.9	28
29	Relation of various GFA indicators to the critical diameter of Zr-based BMGs. Journal of Alloys and Compounds, 2015, 625, 13-17.	5.5	27
30	Solid state reactions in Ni–Al–Ti–C system by mechanical alloying. Journal of Alloys and Compounds, 2000, 308, 230-236.	5.5	26
31	Evolution of structure in austenitic steel powders during ball milling and subsequent sintering. Journal of Alloys and Compounds, 2007, 434-435, 340-343.	5.5	26
32	Nanocrystalline NiAl intermetallic alloy with high hardness produced by mechanical alloying and hot-pressing consolidation. Advanced Powder Technology, 2019, 30, 1312-1318.	4.1	26
33	Stress annealing in Fe73.5Cu1Ta3Si13.5B9amorphous alloy: Induced magnetic anisotropy and variation of the magnetostriction constant. Journal of Applied Physics, 1994, 76, 1131-1134.	2.5	25
34	Magnetically soft nanomaterials for high-temperature applications. Journal of Alloys and Compounds, 2007, 434-435, 623-627.	5.5	25
35	Nanoindentation studies of Zr-based bulk metallic glasses. Journal of Alloys and Compounds, 2007, 441, 62-65.	5.5	25
36	Thermal and magnetic properties of Hf-containing HITPERM alloys. Journal of Magnetism and Magnetic Materials, 2007, 308, 227-232.	2.3	23

IF

CITATIONS

37	An equivalent time approach for scaling the mechanical alloying processes. Intermetallics, 2008, 16, 470-478.	3.9	23
38	Magnetic properties of two-phase nanocrystalline alloy determined by anisotropy and exchange interactions through amorphous matrix. Journal of Magnetism and Magnetic Materials, 1994, 138, 270-280.	2.3	22
39	Magnetically soft nanomaterials for high-temperature applications. IEEE Transactions on Magnetics, 2002, 38, 3075-3077.	2.1	21
40	Structure and magnetic properties of high temperature nanocrystalline Fe–Co–Cu–Nb–Si–B alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 1078-1082.	5.6	21
41	Effect of flash annealing on the grain size and morphology of crystallization products of Co-Si-B glasses. Journal of Materials Science Letters, 1993, 12, 76.	0.5	19
42	Nanocrystalline or amorphous matrix Al60Fe15Ti15(Co/Mg/Zr)5–5%B composites produced by consolidation of mechanically alloyed powders – lightweight materials with high hardness. Intermetallics, 2012, 28, 120-127.	3.9	19
43	Nanocrystalline Al3Ni2 alloy with high hardness produced by mechanical alloying and high-pressure hot-pressing consolidation. Intermetallics, 2013, 42, 35-40.	3.9	19
44	Al3Ni2–Al composites with nanocrystalline intermetallic matrix produced by consolidation of milled powders. Advanced Powder Technology, 2014, 25, 1362-1368.	4.1	18
45	Influence of annealing on magnetic properties of Co-based metallic glasses. Journal of Magnetism and Magnetic Materials, 1984, 43, 135-142.	2.3	17
46	Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1â^'Co) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf 2.3	50 382 Td ())
46 47	Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1â [°] Co) Tj ETQq0 0 0 rgBT /Overl Thermal stability and magnetic properties of Coâ \in "Feâ \in "Hfâ \in "Tiâ \in "Moâ \in "B bulk metallic glass. Intermetallics, 2006, 14, 1066-1068.	ock 10 Tf 3.9	50 <u>3</u> 82 Td (); 17
46 47 48	Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1â*'Co) Tj ETQq0 0 0 rgBT /Overl Thermal stability and magnetic properties of Coâ€"Feâ€"Hfâ€"Tiâ€"Moâ€"B bulk metallic glass. Intermetallics, 2006, 14, 1066-1068. High-frequency soft magnetic properties of Finemet modified with Co. Journal of Magnetism and Magnetic Materials, 2007, 316, e820-e822.	ock 10 Tf 3.9 2.3	50 ₁₇ 82 Td (); 17 17
46 47 48 49	Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1â''Co) Tj ETQq0 0 0 rgBT /Over Thermal stability and magnetic properties of Coâ€"Feâ€"Hfâ€"Tiâ€"Moâ€"B bulk metallic glass. Intermetallics, 2006, 14, 1066-1068. High-frequency soft magnetic properties of Finemet modified with Co. Journal of Magnetism and Magnetic Materials, 2007, 316, e820-e822. Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling. Journal of Non-Crystalline Solids, 2020, 548, 120299.	ock 10 Tf 3.9 2.3 3.1	50 ₁₇ 82 Td (); 17 17 17
46 47 48 49 50	Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1â^'Co) Tj ETQq0 0 0 rgBT /Overl Thermal stability and magnetic properties of Co–Fe–Hf–Ti–Mo–B bulk metallic glass. Intermetallics, 2006, 14, 1066-1068. High-frequency soft magnetic properties of Finemet modified with Co. Journal of Magnetism and Magnetic Materials, 2007, 316, e820-e822. Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling. Journal of Non-Crystalline Solids, 2020, 548, 120299. Thermal stability of amorphous Co-Fe-B, Co-Si-B and Co-Fe-Si-B alloys. Journal of Materials Science, 1980, 15, 2396-2398.	ock 10 Tf 3.9 2.3 3.1 3.7	50 ₁₇ 82 Td (); 17 17 17 16
46 47 48 49 50	Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1âr'Co) Tj ETQq0 0 0 rgBT /Over Thermal stability and magnetic properties of Coâ€"Feâ€"Hfâ€"Tiâ€"Moâ€"B bulk metallic glass. Intermetallics, 2006, 14, 1066-1068. High-frequency soft magnetic properties of Finemet modified with Co. Journal of Magnetism and Magnetic Materials, 2007, 316, e820-e822. Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling. Journal of Non-Crystalline Solids, 2020, 548, 120299. Thermal stability of amorphous Co-Fe-B, Co-Si-B and Co-Fe-Si-B alloys. Journal of Materials Science, 1980, 15, 2396-2398. Magnetic properties of nanocrystalline Fe73.5Cu1Nb3Si16.5B6. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 433-434.	ock 10 Tf 3.9 2.3 3.1 3.7 2.3	50 ₁₇ 82 Td (): 17 17 17 16 16
46 47 48 49 50 51 52	Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1â*'Co) Tj ETQq0 0 0 rgBT /Over Thermal stability and magnetic properties of Coâ€"Feâ€"Hfâ€"Tiâ€"Moâ€"B bulk metallic glass. Intermetallics, 2006, 14, 1066-1068. High-frequency soft magnetic properties of Finemet modified with Co. Journal of Magnetism and Magnetic Materials, 2007, 316, e820-e822. Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling, Journal of Non-Crystalline Solids, 2020, 548, 120299. Thermal stability of amorphous Co-Fe-B, Co-Si-B and Co-Fe-Si-B alloys. Journal of Materials Science, 1980, 15, 2396-2398. Magnetic properties of nanocrystalline Fe73.5Cu1Nb3Si16.5B6. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 433-434. Microstructural transformation and magnetic properties of annealed CoNbCuSiB alloy. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 495-498.	ock 10 Tf 3.9 2.3 3.1 3.7 2.3 2.3	50 ₁₇ 82 Td (): 17 17 16 16 16
 46 47 48 49 50 51 52 53 	Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1âr'Co) Tj ETQq0 0 0 rgBT /Over Thermal stability and magnetic properties of Coâ€"Feâ€"Hfâ€"Tiâ€"Moâ€"B bulk metallic glass. Intermetallics, 2006, 14, 1066-1068. High-frequency soft magnetic properties of Finemet modified with Co. Journal of Magnetism and Magnetic Materials, 2007, 316, e820-e822. Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling. Journal of Non-Crystalline Solids, 2020, 548, 120299. Thermal stability of amorphous Co-Fe-B, Co-Si-B and Co-Fe-Si-B alloys. Journal of Materials Science, 1980, 15, 2396-2398. Magnetic properties of nanocrystalline Fe73.5Cu1Nb3Si16.5B6. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 433-434. Microstructural transformation and magnetic properties of annealed CoNbCuSiB alloy. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 495-498. Nanocrystalline T,2 phase obtained by mechanical alloying of Al60Fe15Si15Ti10 powder mixture followed by consolidation. Journal of Alloys and Compounds, 2009, 483, 186-189.	ock 10 Tf 3.9 2.3 3.1 3.7 2.3 2.3 5.5	50,382 Td (): 17 17 16 16 16

ARTICLE

#

#	Article	IF	CITATIONS
55	Influence of the preparation conditions on the magnetic properties and electrical resistivity of Fe73.5Nb3Cu1Si13.5B9 nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 1994, 133, 314-316.	2.3	15
56	Nanocrystallization and Structure of Fe _{73.5} Cu ₁ Nb ₃ Si _{22.5-x} B _x Alloys. Materials Science Forum, 1995, 179-181, 587-592.	0.3	15
57	Effect of substitution of rare earth by mischmetal on the devitrification process of Al–X–Ni–Co (X=Y,) Tj E	TQg1 1 0	.784314 rgE
58	Supersaturated solid solution obtained by mechanical alloying of 75% Fe, 20% Ge and 5% Nb mixture at different milling intensities. Journal of Alloys and Compounds, 2009, 469, 169-178.	5.5	15
59	Nanocrystalline matrix Al3Ni2–Al–Al3Ni composites produced by reactive hot-pressing of milled powders. Intermetallics, 2014, 54, 193-198.	3.9	15
60	Structure and magnetic properties of bulk amorphous Fe60Co10Ni10Zr7B13 alloy formed by mechanical synthesis and hot pressing. Journal of Non-Crystalline Solids, 2003, 330, 75-80.	3.1	14
61	Temperature of nanocrystallisation of magnetically soft alloys for high-temperature applications. Journal of Materials Processing Technology, 2005, 162-163, 215-219.	6.3	14
62	Magnetic properties of HITPERM-type alloys at high temperature. Journal of Magnetism and Magnetic Materials, 2006, 304, e651-e653.	2.3	14
63	TiC–Al composites with nanocrystalline matrix produced by consolidation of milled powders. Advanced Powder Technology, 2015, 26, 1269-1272.	4.1	14
64	Magnetic properties of Fe76.5â^'xCu1NbxSi13.5B9 alloys nanocrystallized from amorphous state. Journal of Magnetism and Magnetic Materials, 1996, 160, 269-270.	2.3	13
65	Correlation between microstructure and magnetic properties of amorphous and nanocrystalline Fe73.5Cu1Nb3Si16.5B6. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 701-705.	5.6	13
66	Tailoring soft and hard magnets by annealing Co-based metallic glass. Journal of Magnetism and Magnetic Materials, 1998, 190, 267-276.	2.3	13
67	Effect of the substitution of Fe by Co on the magnetic properties and microstructure of nanocrystalline (Fe1â~'xCox)86Hf7B6Cu1 alloys. Journal of Magnetism and Magnetic Materials, 2004, 284, 86-91.	2.3	13
68	Dependence of magnetic properties of the Fe–Co–Cu–Nb–Si–B nanocrystalline alloys on magnetic field frequency and temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 1072-1077.	5.6	13
69	Magnetic properties at elevated temperatures of Co substituted Finemet alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 1110-1115.	5.6	13
70	New Fe–Cr–Mo–Ga–C composites with high compressive strength and large plasticity. Acta Materialia, 2007, 55, 3513-3520.	7.9	13
71	Mössbauer study on amorphous and nanocrystalline (Fe1â^'xCox)86Hf7B6Cu1 alloys. Materials Characterization, 2007, 58, 143-147.	4.4	12
72	Nanocrystalline Ni3Al intermetallic produced by hot-pressing consolidation of mechanically alloyed powders. Intermetallics, 2013, 42, 41-44.	3.9	12

#	Article	IF	CITATIONS
73	Oxidation Behavior of Alx(CoCrFeNi)100-x High-Entropy Alloys Under Thermal-Cycling Conditions. Oxidation of Metals, 2021, 96, 307-321.	2.1	12
74	Magnetization of amorphous and crystalline Coî—,Siî—,B alloys. Materials Science and Engineering, 1988, 99, 77-80.	0.1	11
75	Nanocrystallization of Al–Mm–Ni–(Fe, Co) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 956-960.	5.6	11
76	Evaluation on the reliability of criterions for glass-forming ability of Fe(Co)-based bulk metallic glasses. Journal of Materials Processing Technology, 2008, 204, 465-468.	6.3	11
77	Correlation between microstructure and temperature dependence of magnetic properties in Fe60Co18(Nb,Zr)6B15Cu1 alloy series. Journal of Applied Physics, 2009, 105, .	2.5	11
78	FeAl-B composites with nanocrystalline matrix produced by consolidation of mechanically alloyed powders. Journal of Alloys and Compounds, 2019, 791, 75-80.	5.5	11
79	Magnetic properties of partially crystallised Fe–Co–Hf–Zr–B–Cu alloys. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1469-1470.	2.3	10
80	Magnetoelastic properties of HITPERM-type Fe41,5Co41,5Cu1Nb3B13 nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2006, 304, e624-e626.	2.3	10
81	Formation and magnetic properties of Co–Fe-based bulk metallic glasses with supercooled liquid region. Journal of Magnetism and Magnetic Materials, 2006, 299, 492-495.	2.3	10
82	A direct extension of the Avrami equation to describe the non-isothermal crystallization of Al-base alloys. Journal of Alloys and Compounds, 2007, 434-435, 187-189.	5.5	10
83	Microstructure and mechanical properties of bulk nanocrystalline Al88Mm5Ni5Fe2 alloy consolidated at high pressure. Intermetallics, 2007, 15, 891-900.	3.9	10
84	Ni59Zr20Ti16Si5 bulk amorphous alloy obtained by mechanical alloying and powder consolidation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 1127-1130.	5.6	10
85	Bulk amorphous and nanocrystalline Al83Fe17 alloys prepared by consolidation of mechanically alloyed amorphous powder. Journal of Alloys and Compounds, 2010, 495, 382-385.	5.5	10
86	Zirconium purity influence on the critical diameter and thermal indicators of the Zr48Cu36Al9Ag7 alloy. Journal of Non-Crystalline Solids, 2019, 509, 80-87.	3.1	10
87	W-Y2O3 composites obtained by mechanical alloying and sintering. Advanced Powder Technology, 2021, 32, 390-397.	4.1	10
88	Evolution of the hyperfine and magnetoelastic parameters in the course of crystallization process in niobium-free FINEMET-type alloy. Journal of Magnetism and Magnetic Materials, 2002, 250, 83-91.	2.3	9
89	Magnetic and transport properties of nanocrystallizing supercooled amorphous alloy Fe74Al4Ga2P11B4Si4Cu1. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 377-380.	5.6	9
90	The supercooled liquid region span of Fe-based bulk metallic glasses. Journal of Alloys and Compounds, 2010, 495, 327-329.	5.5	9

#	Article	IF	CITATIONS
91	Nanocrystalline matrix TiC–Al3Ti and TiC–Al3Ti–Al composites produced by reactive hot-pressing of milled powders. Advanced Powder Technology, 2014, 25, 1082-1086.	4.1	9
92	Nanocrystalline Ni3Al-based alloys obtained by recycling of aluminium scraps via mechanical alloying and consolidation. Advanced Powder Technology, 2016, 27, 305-311.	4.1	9
93	Mössbauer study of the structure and stability of amorphous Fe77.5â^'xâ^'yMxNySi13.5B9 alloys. Journal of Magnetism and Magnetic Materials, 1992, 117, 219-224.	2.3	8
94	Annealing Temperature Dependence of Size, Morphology and Composition of Primary Crystals Created in Fe _{76.5} Cu ₁ Si _{13.5} B _{9Glass. Materials Science Forum, 1998, 269-272, 707-712.}	,0.3	8
95	Effect of quenching rate on crystallization in Fe73.5Si13.5B9Cu1Nb3 alloy. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 372-374.	2.3	8
96	Effect of quenching rate on magnetic properties and local magnetic anisotropy in Fe78Si9B13 glass. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 455-458.	2.3	8
97	Structure and magnetic properties of mechanically alloyed Ni–Ge and Co–Ge alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 440-443.	5.6	8
98	Magnetostrictive Iron-Based Bulk Metallic Glasses for Force Sensors. IEEE Transactions on Magnetics, 2014, 50, 1-3.	2.1	8
99	Transport study of nanocrystalline alloys Fe73.5Cu1Nb3Si22-xBx. Scripta Materialia, 1995, 6, 497-500.	0.5	7
100	Low Temperature Nanocrystallization of Iron-Based Amorphous Alloys. Materials Science Forum, 1997, 235-238, 421-426.	0.3	7
101	Formation of stable and metastable phases in Ni–Al–Nb and Ni–Al–Me–C (Me=Ti, Nb or V) powder systems during mechanical alloying and thermal treatment. Journal of Alloys and Compounds, 2002, 333, 225-230.	5.5	7
102	Glass formation and sluggish nucleation: Growth in ternary eutectic Co–Hf–B system. Journal of Non-Crystalline Solids, 2005, 351, 1696-1700.	3.1	7
103	Thermal and microstructural stability of the soft magnetic Fe60Co18Nb6B15Cu1 alloy. Journal of Non-Crystalline Solids, 2007, 353, 872-874.	3.1	7
104	Magnetically soft nanomaterials for high-temperature applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 397-400.	5.6	7
105	High temperature coercivity of Nb-containing HITPERM alloys: Effect of Cu addition. Materials Letters, 2008, 62, 780-783.	2.6	7
106	Structure and magnetic properties of Fe–Nb–B amorphous/nanocrystalline alloys produced by compaction of mechanically alloyed powders. Journal of Applied Physics, 2010, 107, 073901.	2.5	7
107	NiAl-B composites with nanocrystalline intermetallic matrix produced by mechanical alloying and consolidation. Advanced Powder Technology, 2019, 30, 2742-2750.	4.1	7
108	The influence of ultra-rapid annealing on nanocrystallization and magnetic properties of Fe76â°'xNi10B14Cux alloys. Journal of Alloys and Compounds, 2022, 921, 165943.	5.5	7

#	Article	IF	CITATIONS
109	Electron transport study of nanocrystallization in Feî—,Siî—,B based alloys. Scripta Materialia, 1994, 4, 707-721.	0.5	6
110	Magnetic and electron transport study of nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 419-420.	2.3	6
111	Study of nanocrystalline Fe/sub 73.5/Cu/sub 1/Nb/sub 3/Si/sub 16.5/B/sub 6/ ribbons by high-resolution ΔE measurements. IEEE Transactions on Magnetics, 1995, 31, 3895-3897.	2.1	6
112	Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1131-E1133.	2.3	6
113	Nanocrystalline Al 5 Fe 2 intermetallic and Al 5 Fe 2 –Al composites manufactured by high-pressure consolidation of milled powders. Journal of Alloys and Compounds, 2016, 656, 82-87.	5.5	6
114	Ultrasonic vibrations as an impulse for glass transition in microforming of bulk metallic glass. Archives of Civil and Mechanical Engineering, 2019, 19, 100-113.	3.8	6
115	Entropy Change Calculations for Pure Gd and a Ni-Mn-Cu-Ga Heusler Alloy: Constant Field vs. Constant Temperature Experiment. Acta Physica Polonica A, 2015, 128, 111-115.	0.5	6
116	The effect of plastic deformation of amorphous Pd-Si alloys on their thermal properties. Journal of Materials Science, 1980, 15, 3169-3172.	3.7	5
117	Effect of ribbon dimensions on the magnetic properties of metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 133, 236-240.	5.6	5
118	Influence of intrinsic and induced anisotropy on magnetoimpedance effect in amorphous CO67Fe4Mo1.5Si16.5B11. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 498-500.	2.3	5
119	Mössbauer and magnetoelastic investigations of the surface effects in Fe72Cu1.5Nb4Si13.5B9 nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1443-1444.	2.3	5
120	Magnetic study of Hitperm alloys (Fe0.5Co0.5)1-x-y-zMxByCuz(M = Hf, Zr, Nb). Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1561-1566.	1.8	5
121	Formation and properties of the Zr75â^'xAlxNi10Cu10Ti5 bulk metallic glasses. Journal of Alloys and Compounds, 2009, 483, 47-49.	5.5	5
122	Structure, thermal stability and magnetic properties of mechanically alloyed (Fe-Al)-30vol%B powders. Journal of Alloys and Compounds, 2019, 776, 215-223.	5.5	5
123	The electrochemical corrosion of amorphous Ni36Fe32Cr14P12B6 alloy (Metglass 2826A). Corrosion Science, 1979, 19, 1001-1006.	6.6	4
124	Nanostructured Al-Mm-Ni-(Fe,Co) Alloys Produced by Devitrification. Solid State Phenomena, 2003, 94, 71-74.	0.3	4
125	Microstructure and magnetic properties of Fe85â^Co Nb5B8P2 high temperature nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1506-1507.	2.3	4
126	Influence of measuring temperature in size dependence of coercivity in nanostructured alloys. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 171-174.	2.3	4

#	Article	IF	CITATIONS
127	Crystallization Kinetics of Al-Mm-Ni-(Co,Fe) Alloys. Solid State Phenomena, 2005, 101-102, 265-268.	0.3	4
128	rf-Mössbauer study of the magnetic properties of nanocrystalline FeNiZrB and FeNiCoZrB alloys. Journal of Applied Physics, 2006, 99, 08F112.	2.5	4
129	Isothermal Stability and Selected Mechanical Properties of Zr48Cu36Al8Ag8 Bulk Metallic Glass. Archives of Metallurgy and Materials, 2017, 62, 1749-1753.	0.6	4
130	Glass forming ability of Zr48Cu36Al16-xAgx alloys determined by three different methods. Journal of Non-Crystalline Solids, 2019, 515, 106-112.	3.1	4
131	Resistometric study of nanocrystallization kinetics in Fe-based metallic glasses. Scripta Materialia, 1994, 4, 865-875.	0.5	3
132	Mechanochemical Synthesis of Mo-Doped Nickel Aluminides. Inorganic Materials, 2002, 38, 900-904.	0.8	3
133	Magnetically Soft Nanocrystalline Powders of Fe _{73.5} Cu ₁ Nb ₃ Si _{13.5} B ₉ Obtained by Mechanical Alloying and Ball Milling. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 659-664.	0.1	3
134	Soft magnetic properties of the amorphous Fe63Ni7Zr10B20 and Fe53Ni7Co10Zr10B20 alloys. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1141-E1143.	2.3	3
135	Crystallisation behaviour of rapidly quenched cast irons with small amount of boron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 722-727.	5.6	3
136	Investigations of effective magnetic anisotropy and magnetostriction of amorphous and nanocrystalline Fe71.5Cu1Nb3Al2Si13.5B9 alloy by FMR. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 1173-1176.	5.6	3
137	Bulk amorphous cast iron with small boron addition, produced by powder compaction at high pressure. Journal of Alloys and Compounds, 2005, 395, 59-62.	5.5	3
138	Fabrication and structure of bulk nanocrystalline Al–Si–Ni–mishmetal alloys. Journal of Alloys and Compounds, 2007, 434-435, 272-274.	5.5	3
139	Structure and magnetic properties of magnetostrictive rapidly-quenched alloys for force sensors applications. Journal of Physics: Conference Series, 2009, 144, 012062.	0.4	3
140	Nanocrystalline Ni3Al-based alloys produced by mechanical alloying of Ni-Al-Co powders and consolidation. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1384-1387.	0.8	3
141	Crystallisation of Amorphous Al ₆₀ Fe ₂₀ Ti ₁₅ Ni ₅ Alloy Produced by Mechanical Alloying. Solid State Phenomena, 0, 163, 243-246.	0.3	3
142	Influence of Sn Addition on the Amorphization and Thermal Stability of CuTiZrNi Powders Processed by Mechanical Alloying. Materials Science Forum, 2010, 636-637, 917-921.	0.3	3
143	Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron. EPJ Web of Conferences, 2013, 40, 06005.	0.3	3
144	Mössbauer and magnetic studies of FeCoNiCuNbSiB nanocrystalline alloys. Nukleonika, 2017, 62, 79-84.	0.8	3

#	Article	IF	CITATIONS
145	Devitrification of Mechanically Alloyed Fe-Nb System: Mössbauer Study of the Intermetallic Phases. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1395-1401.	2.2	3
146	Nanocrystallisation of Soft Magnetic Fe-Co-Zr-Cu-B Alloys. Acta Physica Polonica A, 2002, 102, 323-328.	0.5	3
147	Effect of the quenching rate on the magnetic permeability of annealed non-magnetostrictive Coî—,Feî—,Mnî—,Moî—,Siî—,B glass. Journal of Magnetism and Magnetic Materials, 1992, 109, 228-236.	2.3	2
148	Magnetic Properties and Stability of Magnetically Soft Nanomaterials for High-Temperature Applications. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 747-752.	0.1	2
149	The Influence of Nanocrystallization Process on Magnetoelastic and Structural Properties of Fe73.5Nb3Cu1Si16.5-xB6+x (x=0; 3) Alloys. European Physical Journal D, 2004, 54, 173-176.	0.4	2
150	Structure and high temperature magnetic properties of nanocrystalline (Fe0.6Co0.4)86Hf7B6Cu1 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 426, 169-172.	5.6	2
151	Ni59Zr20Ti16Sn5 amorphous alloy obtained by melt spinning and mechanical alloying. Journal of Non-Crystalline Solids, 2007, 353, 845-847.	3.1	2
152	Analysis of the mechanically alloyed Fe85–Nb5–B10 powder using a non-unique lattice parameter. Journal of Non-Crystalline Solids, 2008, 354, 5132-5134.	3.1	2
153	Nanocrystalline Al-based alloys – lightweight materials with attractive mechanical properties. Journal of Physics: Conference Series, 2009, 144, 012083.	0.4	2
154	Structure and thermal stability of melt spun and mechanically alloyed Cu ₄₇ Ti ₃₄ Zr ₁₁ Ni ₈ and Cu ₄₇ Ti ₃₄ Sn ₁₁ Ni ₈ alloys. Journal of Physics: Conference Series, 2009, 144, 012023.	0.4	2
155	Comparative study of structural and magnetic properties of ribbon and bulk Ni55Fe19Ga26 Heusler alloy. Journal of Alloys and Compounds, 2022, 889, 161819.	5.5	2
156	Influence of Cu and Ta on the stress induced anisotropy in FeSiB amorphous ribbons. IEEE Transactions on Magnetics, 1995, 31, 3781-3783.	2.1	1
157	Magnetization processes in partially crystallized Co-based metallic glass. IEEE Transactions on Magnetics, 1999, 35, 3877-3879.	2.1	1
158	Effect of Annealing Conditions and Alloy Composition on Primary Crystals Created in Al-Y-Ni Glasses. Materials Science Forum, 2001, 360-362, 149-154.	0.3	1
159	Magnetically Soft Fe-Co-Based Nanocrystalline Alloys. Solid State Phenomena, 2003, 94, 67-70.	0.3	1
160	Structure and magnetoelastic properties of partially nanocrystallized Fe73.5Nb3Cu1Si16.5B6alloy. Physica Status Solidi A, 2004, 201, 3305-3308.	1.7	1
161	Structural Changes in High Speed Steel Powders Subjected to Ball Milling. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 585-588.	0.1	1
162	Magnetically Soft Nanocrystalline Materials Obtained by Devitrification of Metallic Glasses. , 2005, , 47-57.		1

#	Article	IF	CITATIONS
163	Bulk Nanostructured Al-Si-Ni-Mishmetal Alloys Produced by High-Pressure Hot Compaction. Solid State Phenomena, 0, 130, 189-192.	0.3	1
164	Crystallisation and magnetic behaviour of amorphous and nanocrystalline Fe _{81–<i>x</i> –<i>y</i>} Ni _{<i>x</i>} Co _{<i>y</i>} Zr ₇ B ₁₂ alloys. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3179-3192.	1.8	1
165	Bulk amorphous Ni59Zr20Ti16Sn5 alloy fabricated by powder compaction. Journal of Alloys and Compounds, 2009, 483, 162-164.	5.5	1
166	Mechanical Testing of Iron based Bulk Metallic Glasses and Their Suitability for Force Sensors. EPJ Web of Conferences, 2013, 40, 16001.	0.3	1
167	Highâ€entropy eutectic composites with high strength and low Young's modulus. Material Design and Processing Communications, 2020, 3, e211.	0.9	1
168	The Influence of Annealing Temperature on Magnetic Properties of Vitrovac 6030. Acta Physica Polonica A, 1999, 96, 483-494.	0.5	1
169	Magnetically Soft Nanomaterials Obtained by Devitrification of Metallic Glasses. Journal of Magnetics, 2004, 9, 65-68.	0.4	1
170	Gradually Devitrified Co-Based Metallic Glass As a Model Material for Testing Néel's Theory of the Rayleigh Rule. Acta Physica Polonica A, 1999, 95, 287-296.	0.5	1
171	Evaluation of phase stability and diffusion kinetics in novel BCC-structured high entropy alloys. Materials Research Letters, 2022, 10, 556-565.	8.7	1
172	MAGNETOSTRICTION OF SOFT MAGNETIC NANOCRYSTALLINE Fe-BASED GLASSES WITH Cu, Nb AND Ta ADDITIONS. International Journal of Modern Physics B, 1993, 07, 946-949.	2.0	0
173	Magnetically soft nanomaterials for high-temperature applications. , 0, , .		Ο
174	Bulk Nanostructured Al-Mm-Ni-(Fe,Co) Alloys Produced by High-Pressure Hot Compaction. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 77-82.	0.1	0
175	Microstructure and magnetic properties of Fe81P13Si2Nb3Cu1 nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1360-1361.	2.3	Ο
176	Thermal Stability of Magnetic Properties of Nanocrystalline Fe-Co-Hf-Cu-B Alloys. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 635-638.	0.1	0
177	Quality of Compaction and Microhardness of Bulk Nanocrystalline Al ₈₈ Mm ₅ Ni ₅ Fe ₂ Alloy Consolidated at High Pressure. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 403-406.	0.1	Ο
178	Influence of High Pressure Hot Compaction on Microstructure of Al-Si-Ni-Mm Alloys. Solid State Phenomena, 2006, 114, 251-256.	0.3	0
179	Magnetic properties of nanocrystalline FeNiCo x ZrB alloys (x=0, 10, 20). Hyperfine Interactions, 2007, 165, 183-188.	0.5	0
180	Magnetic Anisotropy of Nanocrystalline HITPERM-Type Alloys and its Correlation with Application. Solid State Phenomena, 2009, 154, 169-173	0.3	0

#	Article	IF	CITATIONS
181	Specific heat measurements on amorphous and nanocrystalline Al88Y5Ni5Co2. Journal of Alloys and Compounds, 2009, 478, 19-21.	5.5	0
182	Preface: Phys. Status Solidi C 7/5. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1329-1330.	0.8	0
183	Phase Transformation in Al ₃ Ni ₂ Alloy during Mechanical Alloying and Heating of Milling Products. Solid State Phenomena, 2013, 203-204, 272-275.	0.3	0
184	Effect of ribbon dimensions on the magnetic properties of metallic glasses. , 1991, , 236-240.		0
185	Variety of Magnetic Phases in Nanocrystalline Fe-based Metallic Glasses. , 1993, , 145-152.		0
186	Correlation between Barkhausen Noise and Coercivity in Amorphous and Nanocrystalline Fe-Cu-Nb-Si-B Alloys. Acta Physica Polonica A, 1997, 91, 435-438.	0.5	0
187	1999, 23, 549-551.	0.4	0
188	Magnetic properties of nanocrystalline FeNiCoxZrB alloys (x = 0, 10, 20). , 2006, , 183-188.		0