Nicholas J K Howden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596631/publications.pdf Version: 2024-02-01

NICHOLAS LK HOWDEN

#	Article	IF	CITATIONS
1	Local climate impacts from ongoing restoration of a peatland. Hydrological Processes, 2022, 36, .	1.1	5
2	A 50â€ y ear record of nitrate concentrations in the Slapton Ley Catchment, Devon, United Kingdom. Hydrological Processes, 2021, 35, .	1.1	2
3	Including Regional Knowledge Improves Baseflow Signature Predictions in Large Sample Hydrology. Water Resources Research, 2021, 57, e2020WR028354.	1.7	30
4	TOSSH: A Toolbox for Streamflow Signatures in Hydrology. Environmental Modelling and Software, 2021, 138, 104983.	1.9	26
5	Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow. Hydrology and Earth System Sciences, 2021, 25, 2223-2237.	1.9	11
6	Within-field spatial variability of greenhouse gas fluxes from an extensive and intensive sheep-grazed pasture. Agriculture, Ecosystems and Environment, 2021, 312, 107355.	2.5	2
7	On doing hydrology with dragons: Realizing the value of perceptual models and knowledge accumulation. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1550.	2.8	26
8	BOD as a Measure of Fluvial Organic Matter Lability—The Decoupling of O ₂ Consumption From CO ₂ Production. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	1.3	1
9	The problem of underpowered rivers. Earth Surface Processes and Landforms, 2020, 45, 3869-3878.	1.2	2
10	The dissolved organic carbon flux from the UK – A new Bayesian approach to flux calculation. Journal of Hydrology, 2020, 590, 125511.	2.3	3
11	Are peatlands cool humid islands in a landscape?. Hydrological Processes, 2020, 34, 5013-5025.	1.1	4
12	Global karst springs hydrograph dataset for research and management of the world's fastest-flowing groundwater. Scientific Data, 2020, 7, 59.	2.4	45
13	The probability of breaching water quality standards – A probabilistic model of river water nitrate concentrations. Journal of Hydrology, 2020, 583, 124562.	2.3	9
14	Hydrological signatures describing the translation of climate seasonality into streamflow seasonality. Hydrology and Earth System Sciences, 2020, 24, 561-580.	1.9	20
15	CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain. Earth System Science Data, 2020, 12, 2459-2483.	3.7	87
16	DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology. Geoscientific Model Development, 2019, 12, 2285-2306.	1.3	51
17	The Impact of Peatland Restoration on Local Climate: Restoration of a Cool Humid Island. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1696-1713.	1.3	14
18	The importance of sewage effluent discharge in the export of dissolved organic carbon from U.K. rivers. Hydrological Processes, 2019, 33, 1851-1864.	1.1	14

NICHOLAS J K HOWDEN

#	Article	IF	CITATIONS
19	Is There a Baseflow Budyko Curve?. Water Resources Research, 2019, 55, 2838-2855.	1.7	45
20	Drivers of interannual and intraâ€annual variability of dissolved organic carbon concentration in the River Thames between 1884 and 2013. Hydrological Processes, 2019, 33, 994-1012.	1.1	10
21	Forty-year trends in the flux and concentration of phosphorus in British rivers. Journal of Hydrology, 2018, 558, 314-327.	2.3	21
22	The stable oxygen isotope ratio of resin extractable phosphate derived from fresh cattle faeces. Rapid Communications in Mass Spectrometry, 2018, 32, 703-710.	0.7	6
23	Declines in the dissolved organic carbon (DOC) concentration and flux from the UK. Journal of Hydrology, 2018, 556, 775-789.	2.3	26
24	The fate of suspended sediment and particulate organic carbon in transit through the channels of a river catchment. Hydrological Processes, 2018, 32, 146-159.	1.1	11
25	The seven sources of variance in fluvial flux time series. Hydrological Processes, 2018, 32, 3996-3997.	1.1	3
26	Process-based modelling to evaluate simulated groundwater levels and frequencies in aÂChalk catchment in south-western England. Natural Hazards and Earth System Sciences, 2018, 18, 445-461.	1.5	22
27	Human impact on longâ€ŧerm organic carbon export to rivers. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 947-965.	1.3	37
28	Phosphate stable oxygen isotope variability within a temperate agricultural soil. Geoderma, 2017, 285, 64-75.	2.3	29
29	More rain, less soil: longâ€term changes in rainfall intensity with climate change. Earth Surface Processes and Landforms, 2016, 41, 563-566.	1.2	72
30	Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9, 353-356.	5.4	282
31	Water availability and agricultural demand: An assessment framework using global datasets in a data scarce catchment, Rokel-Seli River, Sierra Leone. Journal of Hydrology: Regional Studies, 2016, 8, 222-234.	1.0	12
32	The fluvial flux of total reactive and total phosphorus from the UK in the context of a national phosphorus budget: comparing UK river fluxes with phosphorus trade imports and exports. Biogeochemistry, 2016, 130, 31-51.	1.7	17
33	Transit times—the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 629-657.	2.8	184
34	The fluvial flux of particulate organic matter from the UK: the emission factor of soil erosion. Earth Surface Processes and Landforms, 2016, 41, 61-71.	1.2	22
35	Quantifying landscapeâ€level methane fluxes in subarctic Finland using a multiscale approach. Global Change Biology, 2015, 21, 3712-3725.	4.2	23
36	Shifts in discharge-concentration relationships as a small catchment recover from severe drought. Hydrological Processes, 2015, 29, 498-507.	1.1	34

NICHOLAS J K HOWDEN

#	Article	IF	CITATIONS
37	The problem of self-correlation in fluvial flux data – The case of nitrate flux from UK rivers. Journal of Hydrology, 2015, 530, 328-335.	2.3	1
38	Seeing the climate through the trees: observing climate and forestry impacts on streamflow using a 60â€year record. Hydrological Processes, 2015, 29, 473-480.	1.1	24
39	Time series analysis of the world's longest fluvial nitrate record: evidence for changing states of catchment saturation. Hydrological Processes, 2015, 29, 434-444.	1.1	14
40	Catchment similarity concepts for understanding dynamic biogeochemical behaviour of river basins. Hydrological Processes, 2014, 28, 1554-1560.	1.1	14
41	Variation in suspended sediment yield across the UK – A failure of the concept and interpretation of the sediment delivery ratio. Journal of Hydrology, 2014, 519, 1985-1996.	2.3	31
42	A method of estimating in-stream residence time of water in rivers. Journal of Hydrology, 2014, 512, 274-284.	2.3	31
43	The fluvial flux of particulate organic matter from the UK: Quantifying in-stream losses and carbon sinks. Journal of Hydrology, 2014, 519, 611-625.	2.3	38
44	Sustainable Phosphorus Management and the Need for a Long-Term Perspective: The Legacy Hypothesis. Environmental Science & Technology, 2014, 48, 8417-8419.	4.6	161
45	Correction of fluvial fluxes of chemical species for diurnal variation. Journal of Hydrology, 2013, 481, 1-11.	2.3	13
46	Assessment of sample frequency bias and precision in fluvial flux calculations – An improved low bias estimation method. Journal of Hydrology, 2013, 503, 101-110.	2.3	37
47	The flux of suspended sediment from the UK 1974 to 2010. Journal of Hydrology, 2013, 504, 29-39.	2.3	17
48	North Atlantic Oscillation amplifies orographic precipitation and river flow in upland Britain. Water Resources Research, 2013, 49, 3504-3515.	1.7	62
49	Farming for Water Quality: Balancing Food Security and Nitrate Pollution in UK River Basins. Annals of the American Association of Geographers, 2013, 103, 397-407.	3.0	33
50	The flux of dissolved nitrogen from the UK — Evaluating the role of soils and land use. Science of the Total Environment, 2012, 434, 90-100.	3.9	24
51	Monitoring fluvial water chemistry for trend detection: hydrological variability masks trends in datasets covering fewer than 12 years. Journal of Environmental Monitoring, 2011, 13, 514.	2.1	27
52	Nitrate in United Kingdom Rivers: Policy and Its Outcomes Since 1970. Environmental Science & Technology, 2011, 45, 175-181.	4.6	60
53	Nitrate pollution in intensively farmed regions: What are the prospects for sustaining highâ€quality groundwater?. Water Resources Research, 2011, 47, .	1.7	84
54	Modelling long-term diffuse nitrate pollution at the catchment-scale: Data, parameter and epistemic uncertainty. Journal of Hydrology, 2011, 403, 337-351.	2.3	52

NICHOLAS J K HOWDEN

#	Article	IF	CITATIONS
55	On the value of longâ€ŧerm, lowâ€frequency water quality sampling: avoiding throwing the baby out with the bathwater. Hydrological Processes, 2011, 25, 828-830.	1.1	44
56	Analysis of Nitrate Concentrations Using Nonlinear Time Series Models. Journal of Hydrology and Hydromechanics, 2011, 59, .	0.7	5
57	3 River catchment contributions to the coastal zone. , 2010, , 31-58.		0
58	An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. Science of the Total Environment, 2010, 408, 1847-1857.	3.9	73
59	Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): are increases irreversible?. Hydrological Processes, 2010, 24, 2657-2662.	1.1	132
60	Water quality, nutrients and the European union's Water Framework Directive in a lowland agricultural region: Suffolk, south-east England. Science of the Total Environment, 2009, 407, 2966-2979.	3.9	29
61	Linking North Atlantic ocean–atmosphere teleconnection patterns and hydrogeological responses in temperate groundwater systems. Hydrological Processes, 2009, 23, 3123-3126.	1.1	23
62	The relationship between land use and surface water resources in the UK. Land Use Policy, 2009, 26, S243-S250.	2.5	65
63	Comment on â€~Burt T, Worrall F. 2007. Nonâ€stationarity in long time series: some curious reversals in the memory effect. <i>Hydrological Processes</i> 21: 3529–3531'. Hydrological Processes, 2008, 22, 2887-2889.	1.1	2
64	Phosphorus in groundwater—an overlooked contributor to eutrophication?. Hydrological Processes, 2008, 22, 5121-5127.	1.1	169
65	Temporal and spatial analysis of nitrate concentrations from the Frome and Piddle catchments in Dorset (UK) for water years 1978 to 2007: Evidence for nitrate breakthrough?. Science of the Total Environment, 2008, 407, 507-526.	3.9	40
66	Importance of long-term monitoring for detecting environmental change: lessons from a lowland river in south east England. Biogeosciences, 2008, 5, 1529-1535.	1.3	58
67	Slopes: solute processes and landforms. Geological Society Memoir, 0, , M58-2021-5.	0.9	4