
Honglie Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanicallyâ€Guided Structural Designs in Stretchable Inorganic Electronics. Advanced Materials, 2020, 32, e1902254.	11.1	183
2	Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 33370-33379.	4.0	127
3	Soft three-dimensional network materials with rational bio-mimetic designs. Nature Communications, 2020, 11, 1180.	5.8	120
4	Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature, 2021, 597, 503-510.	13.7	120
5	High-performance flexible strain sensor with bio-inspired crack arrays. Nanoscale, 2018, 10, 15178-15186.	2.8	115
6	Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale, 2017, 9, 1166-1173.	2.8	101
7	Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Science Advances, 2022, 8, eabm3785.	4.7	89
8	4D Printing Strain Self‣ensing and Temperature Self‣ensing Integrated Sensor–Actuator with Bioinspired Gradient Gaps. Advanced Science, 2020, 7, 2000584.	5.6	72
9	Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms. National Science Review, 2020, 7, 342-354.	4.6	68
10	One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability. Applied Surface Science, 2019, 473, 493-499.	3.1	62
11	High Performance, Tunable Electrically Small Antennas through Mechanically Guided 3D Assembly. Small, 2019, 15, e1804055.	5.2	60
12	Artificial Hair-Like Sensors Inspired from Nature: A Review. Journal of Bionic Engineering, 2018, 15, 409-434.	2.7	55
13	Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. Science Advances, 2020, 6, eabb7417.	4.7	50
14	Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly. Advanced Materials, 2020, 32, e1908424.	11.1	34
15	An Antiâ€Fatigue Design Strategy for 3D Ribbonâ€Shaped Flexible Electronics. Advanced Materials, 2021, 33, e2102684.	11.1	27
16	Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
17	The effect of the micro-structures on the scorpion surface for improving the anti-erosion performance. Surface and Coatings Technology, 2017, 313, 143-150.	2.2	22
18	Highly Efficient Mechanoelectrical Energy Conversion Based on the Nearâ€Tip Stress Field of an Antifracture Slit Observed in Scorpions, Advanced Functional Materials, 2019, 29, 1807693	7.8	21

HONGLIE SONG

#	Article	IF	CITATIONS
19	Toward Imperfection-Insensitive Soft Network Materials for Applications in Stretchable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 36100-36109.	4.0	17
20	Flexible and highly sensitive pressure sensors based on microcrack arrays inspired by scorpions. RSC Advances, 2019, 9, 22740-22748.	1.7	16
21	Design and Assembly of Reconfigurable 3D Radioâ€Frequency Antennas Based on Mechanically Triggered Switches. Advanced Electronic Materials, 2019, 5, 1900256.	2.6	14
22	Passive Particle Jamming Variable Stiffness Materialâ€Based Flexible Capacitive Stress Sensor with High Sensitivity and Large Measurement Limit. Advanced Materials Technologies, 2021, 6, 2100106.	3.0	14
23	Vibrational Receptor of Scorpion (Heterometrus petersii): The Basitarsal Compound Slit Sensilla. Journal of Bionic Engineering, 2019, 16, 76-87.	2.7	12
24	Morphable three-dimensional electronic mesofliers capable of on-demand unfolding. Science China Materials, 2022, 65, 2309-2318.	3.5	12
25	Towards high thermal stability of optical sensing materials with bio-inspired nanostructure. Materials Letters, 2018, 221, 26-30.	1.3	8
26	Designing superhydrophobic robotic surfaces: Self-cleaning, high-grip impact, and bacterial repelling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127444.	2.3	5
27	Fine Structure of Scorpion Pectines for Odor Capture. Journal of Bionic Engineering, 2017, 14, 589-599.	2.7	3
28	Mechanoelectrical Energy Conversion: Highly Efficient Mechanoelectrical Energy Conversion Based on the Nearâ€Tip Stress Field of an Antifracture Slit Observed in Scorpions (Adv. Funct. Mater. 22/2019). Advanced Functional Materials, 2019, 29, 1970147.	7.8	3
29	Large Curvature Folding Strategies of Butterfly Proboscis. Journal of Bionic Engineering, 2020, 17, 1239-1250.	2.7	2
30	A soft gripper with contamination resistance and large friction coefficient. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1
31	Inverse Design Methods: Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly (Adv. Mater. 14/2020). Advanced Materials, 2020, 32, 2070107.	11.1	Ο
32	An Antiâ€Fatigue Design Strategy for 3D Ribbonâ€Shaped Flexible Electronics (Adv. Mater. 37/2021). Advanced Materials, 2021, 33, 2170294.	11.1	0