
M T Bland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/259647/publications.pdf Version: 2024-02-01

MTRIAND

#	Article	IF	CITATIONS
1	Cryovolcanism on Ceres. Science, 2016, 353, .	12.6	164
2	Cratering on Ceres: Implications for its crust and evolution. Science, 2016, 353, .	12.6	135
3	Composition and structure of the shallow subsurface of Ceres revealed by craterÂmorphology. Nature Geoscience, 2016, 9, 538-542.	12.9	118
4	The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 2017, 476, 153-164.	4.4	117
5	The geomorphology of Ceres. Science, 2016, 353, .	12.6	109
6	Enceladus' extreme heat flux as revealed by its relaxed craters. Geophysical Research Letters, 2012, 39, .	4.0	85
7	The missing large impact craters on Ceres. Nature Communications, 2016, 7, 12257.	12.8	84
8	Geomorphological evidence for ground ice on dwarf planet Ceres. Nature Geoscience, 2017, 10, 338-343.	12.9	83
9	The orbital–thermal evolution and global expansion of Ganymede. Icarus, 2009, 200, 207-221.	2.5	63
10	The vanishing cryovolcanoes of Ceres. Geophysical Research Letters, 2017, 44, 1243-1250.	4.0	56
11	Predicted crater morphologies on Ceres: Probing internal structure and evolution. Icarus, 2013, 226, 510-521.	2.5	50
12	Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. Geophysical Research Letters, 2017, 44, 6570-6578.	4.0	48
13	Unstable extension of Enceladus' lithosphere. Icarus, 2007, 192, 92-105.	2.5	47
14	Conditions for the Longâ€Term Preservation of a Deep Brine Reservoir in Ceres. Geophysical Research Letters, 2019, 46, 1963-1972.	4.0	46
15	Ceres: Astrobiological Target and Possible Ocean World. Astrobiology, 2020, 20, 269-291.	3.0	43
16	Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus, 2019, 320, 39-48.	2.5	42
17	The formation of Ganymede's grooved terrain: Numerical modeling of extensional necking instabilities. Icarus, 2007, 189, 439-456.	2.5	41
18	Cryovolcanic rates on Ceres revealed by topography. Nature Astronomy, 2018, 2, 946-950.	10.1	38

M T Bland

#	Article	IF	CITATIONS
19	A Global Inventory of Iceâ€Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere. Journal of Geophysical Research E: Planets, 2019, 124, 1650-1689.	3.6	33
20	Evidence for the Interior Evolution of Ceres from Geologic Analysis of Fractures. Geophysical Research Letters, 2017, 44, 9564-9572.	4.0	31
21	Constraining the heat flux between Enceladus' tiger stripes: Numerical modeling of funiscular plains formation. Icarus, 2015, 260, 232-245.	2.5	27
22	Forming Ganymede's grooves at smaller strain: Toward a self-consistent local and global strain history for Ganymede. Icarus, 2015, 245, 247-262.	2.5	22
23	Viscous relaxation of Ganymede's impact craters: Constraints on heat flux. Icarus, 2017, 296, 275-288.	2.5	22
24	Ceres internal structure from geophysical constraints. Meteoritics and Planetary Science, 2018, 53, 1999-2007.	1.6	19
25	The effects of strain localization on the formation of Ganymede's grooved terrain. Icarus, 2010, 210, 396-410.	2.5	18
26	Forming Europa's folds: Strain requirements for the production of large-amplitude deformation. Icarus, 2012, 221, 694-709.	2.5	17
27	Dome formation on Ceres by solid-state flow analogous to terrestrial salt tectonics. Nature Geoscience, 2019, 12, 797-801.	12.9	16
28	Landslides on Ceres: Inferences Into Ice Content and Layering in the Upper Crust. Journal of Geophysical Research E: Planets, 2019, 124, 1512-1524.	3.6	16
29	Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan. Geophysical Research Letters, 2018, 45, 1297-1304.	4.0	15
30	Landslides on Ceres: Diversity and Geologic Context. Journal of Geophysical Research E: Planets, 2019, 124, 3329-3343.	3.6	14
31	Compositional control on impact crater formation on mid-sized planetary bodies: Dawn at Ceres and Vesta, Cassini at Saturn. Icarus, 2021, 359, 114343.	2.5	14
32	A New Enceladus Global Control Network, Image Mosaic, and Updated Pointing Kernels From Cassini's 13‥ear Mission. Earth and Space Science, 2018, 5, 604-621.	2.6	13
33	Floorâ€Fractured Craters on Ceres and Implications for Interior Processes. Journal of Geophysical Research E: Planets, 2018, 123, 3188-3204.	3.6	13
34	Relaxed impact craters on Ganymede: Regional variation and high heat flows. Icarus, 2018, 306, 214-224.	2.5	11
35	The formation of Enceladus' Tiger Stripe Fractures from eccentricity tides. Earth and Planetary Science Letters, 2020, 544, 116389.	4.4	11
36	Improving the Usability of Galileo and Voyager Images of Jupiter's Moon Europa. Earth and Space Science, 2021, 8, .	2.6	11

M T Bland

#	Article	IF	CITATIONS
37	Concepts for the Future Exploration of Dwarf Planet Ceres' Habitability. Planetary Science Journal, 2022, 3, 41.	3.6	9
38	Does folding accommodate Europa's contractional strain? The effect of surface temperature on fold formation in ice lithospheres. Geophysical Research Letters, 2013, 40, 2534-2538.	4.0	7
39	Framework for the Development of Planetary Spatial Data Infrastructures: A Europa Case Study. Earth and Space Science, 2018, 5, 486-502.	2.6	7
40	Silicate Volcanism on Europa's Seafloor and Implications for Habitability. Geophysical Research Letters, 2022, 49, .	4.0	5
41	How Well Do We Know Europa's Topography? An Evaluation of the Variability in Digital Terrain Models of Europa. Remote Sensing, 2021, 13, 5097.	4.0	5
42	Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension. Icarus, 2018, 306, 285-305.	2.5	4
43	Final Mimas and Enceladus atlases derived from Cassini-ISS images. Planetary and Space Science, 2018, 164, 13-18.	1.7	4
44	A GLOBAL SHAPE MODEL FOR SATURN'S MOON ENCELADUS FROM A DENSE PHOTOGRAMMETRIC CONTRONETWORK. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 579-586.	DL 0.0	4
45	Ceres' Broad‣cale Surface Geomorphology Largely Due To Asymmetric Internal Convection. AGU Advances, 2022, 3, .	5.4	2