Dragan P Uskokovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596374/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 152-191.	1.6	438
2	A review of recent developments in the synthesis procedures of lithium iron phosphate powders. Journal of Power Sources, 2009, 190, 538-544.	4.0	303
3	Crystal Structure of Hydroxyapatite Nanorods Synthesized by Sonochemical Homogeneous Precipitation. Crystal Growth and Design, 2008, 8, 2217-2222.	1.4	207
4	Synthesis and properties of hydroxyapatite/poly-?-lactide composite biomaterials. Biomaterials, 1999, 20, 809-816.	5.7	195
5	DNA damage and alterations in expression of DNA damage responsive genes induced by TiO ₂ nanoparticles in human hepatoma HepG2 cells. Nanotoxicology, 2011, 5, 341-353.	1.6	192
6	Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids and Surfaces B: Biointerfaces, 2013, 102, 21-28.	2.5	178
7	Poly(lactide-co-glycolide)-based Micro and Nanoparticles for the Controlled Drug Delivery of Vitamins. Current Nanoscience, 2009, 5, 1-14.	0.7	141
8	A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials, 2001, 22, 571-575.	5.7	130
9	Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. Journal of Solid State Chemistry, 2004, 177, 2565-2574.	1.4	106
10	Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis. Journal of Colloid and Interface Science, 2004, 278, 342-352.	5.0	98
11	Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Applied Surface Science, 2004, 238, 314-319.	3.1	86
12	Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. Journal of Materials Science: Materials in Medicine, 2013, 24, 343-354.	1.7	83
13	Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology. Biomedical Materials (Bristol), 2011, 6, 045005.	1.7	82
14	Preparation and properties of BaTi1â^'xSnxO3 multilayered ceramics. Journal of the European Ceramic Society, 2007, 27, 505-509.	2.8	81
15	Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. Journal of Applied Crystallography, 2010, 43, 320-327.	1.9	81
16	Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomaterialia, 2014, 10, 151-162.	4.1	77
17	Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Materials Science and Engineering C, 2016, 60, 357-364.	3.8	76
18	Hydrothermal Synthesis of Nanosized Pure and Cobalt-Exchanged Hydroxyapatite. Materials and Manufacturing Processes, 2009, 24, 1096-1103.	2.7	74

#	Article	IF	CITATIONS
19	TiO2 films prepared by ultrasonic spray pyrolysis of nanosize precursor. Materials Letters, 2002, 54, 298-302.	1.3	71
20	Evaluation of hot-pressed hydroxyapatite/poly-L-lactide composite biomaterial characteristics. Journal of Biomedical Materials Research Part B, 2004, 71B, 284-294.	3.0	69
21	Fabrication, in vitro degradation and the release behaviours of poly(dl-lactide-co-glycolide) nanospheres containing ascorbic acid. Colloids and Surfaces B: Biointerfaces, 2007, 59, 215-223.	2.5	68
22	Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. Journal of the European Ceramic Society, 2011, 31, 19-27.	2.8	64
23	Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer, 2012, 53, 2818-2828.	1.8	63
24	Preparation of fine spherical ZnO powders by an ultrasonic spray pyrolysis method. Materials Letters, 1994, 19, 165-170.	1.3	59
25	Multifunctional hydroxyapatite and poly(d,l-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Materials Science and Engineering C, 2013, 33, 943-950.	3.8	57
26	Micromechanical properties of a hydroxyapatite/poly-l-lactide biocomposite using nanoindentation and modulus mapping. Journal of the European Ceramic Society, 2007, 27, 1559-1564.	2.8	49
27	Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(d,l-lactide-co-glycolide) powders for the treatment of osteomyelitis. Materials Science and Engineering C, 2013, 33, 3362-3373.	3.8	48
28	Micro- and nano-injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactide-co-glycolide). Acta Biomaterialia, 2007, 3, 927-935.	4.1	47
29	Poly(DL-lactide- <i>co</i> -glycolide) Nanospheres for the Sustained Release of Folic Acid. Journal of Biomedical Nanotechnology, 2008, 4, 349-358.	0.5	47
30	Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. Journal of Materials Science: Materials in Electronics, 2012, 23, 1538-1542.	1.1	47
31	Gamma irradiation processing of hydroxyapatite/poly-L-lactide composite biomaterial. Radiation Physics and Chemistry, 2003, 67, 375-379.	1.4	44
32	Ultrasonic de-agglomeration of barium titanate powder. Ultrasonics Sonochemistry, 2008, 15, 16-20.	3.8	44
33	Controlled assembly of poly(d,l-lactide-co-glycolide)/hydroxyapatite core–shell nanospheres under ultrasonic irradiation. Acta Biomaterialia, 2009, 5, 208-218.	4.1	44
34	Crystal structure analysis and first principle investigation of F doping in LiFePO4. Journal of Power Sources, 2013, 241, 70-79.	4.0	42
35	Investigating an organ-targeting platform based on hydroxyapatite nanoparticles using a novel in situ method of radioactive 125Iodine labeling. Materials Science and Engineering C, 2014, 43, 439-446.	3.8	42
36	Microstructural characteristics of calcium hydroxyapatite/poly- l-lactide based composites. Journal of Microscopy, 1999, 196, 243-248.	0.8	40

#	Article	IF	CITATIONS
37	A novel nano drug delivery system based on tigecycline-loaded calciumphosphate coated with poly-dl-lactide-co-glycolide. Journal of Materials Science: Materials in Medicine, 2010, 21, 231-239.	1.7	40
38	Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. Journal of Pharmacy and Pharmacology, 2013, 65, 1451-1462.	1.2	39
39	Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method. Solid State Ionics, 2008, 179, 415-419.	1.3	38
40	A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ,l-glutamic acid)-capped silver nanoparticles. Colloid and Polymer Science, 2012, 290, 221-231.	1.0	38
41	Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 168, 249-252.	2.6	37
42	Controlled mechanochemically assisted synthesis of ZnO nanopowders in the presence of oxalic acid. Journal of Materials Science, 2011, 46, 3716-3724.	1.7	37
43	Facile Solvothermal Preparation of Monodisperse Gold Nanoparticles and Their Engineered Assembly of Ferritin–Gold Nanoclusters. Langmuir, 2013, 29, 15698-15703.	1.6	35
44	Composite PLGA/AgNpPGA/AscH Nanospheres with Combined Osteoinductive, Antioxidative, and Antimicrobial Activities. ACS Applied Materials & Interfaces, 2013, 5, 9034-9042.	4.0	35
45	Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics. Ceramics International, 2015, 41, 2654-2667.	2.3	35
46	Synthesis of mullite nanostructured spherical powder by ultrasonic spray pyrolysis. Scripta Materialia, 1998, 10, 341-348.	0.5	33
47	Enhanced Osteogenesis of Nanosized Cobalt-substituted Hydroxyapatite. Journal of Bionic Engineering, 2015, 12, 604-612.	2.7	33
48	Chitosan oligosaccharide lactate coated hydroxyapatite nanoparticles as a vehicle for the delivery of steroid drugs and the targeting of breast cancer cells. Journal of Materials Chemistry B, 2018, 6, 6957-6968.	2.9	33
49	Cytotoxicity and fibroblast properties during in vitro test of biphasic calcium phosphate/poly-dl-lactide-co-glycolide biocomposites and different phosphate materials. Microscopy Research and Technique, 2006, 69, 976-982.	1.2	32
50	Biphasic calcium phosphate coated with poly-d,l-lactide-co-glycolide biomaterial as a bone substitute. Journal of the European Ceramic Society, 2007, 27, 1589-1594.	2.8	32
51	Preparation of LiFePO4/C composites by co-precipitation in molten stearic acid. Journal of Power Sources, 2011, 196, 4613-4618.	4.0	32
52	Poly(D,L-lactide-co-glycolide)/hydroxyapatite core–shell nanosphere. Part 2: Simultaneous release of a drug and a prodrug (clindamycin and clindamycin phosphate). Colloids and Surfaces B: Biointerfaces, 2011, 82, 414-421.	2.5	32
53	Radiation-induced degradation of hydroxyapatite/poly L-lactide composite biomaterial. Radiation Physics and Chemistry, 2007, 76, 722-728.	1.4	31
54	Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. Materials Science and Engineering C, 2016, 68, 746-757.	3.8	31

#	Article	IF	CITATIONS
55	Poly(d,l-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. Colloids and Surfaces B: Biointerfaces, 2011, 82, 404-413.	2.5	30
56	Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Materials Letters, 2014, 122, 296-300.	1.3	30
57	Predictive modeling of the mechanical properties of particulate hydroxyapatite reinforced polymer composites. Journal of Biomedical Materials Research Part B, 2002, 63, 793-799.	3.0	29
58	New biocomposite [biphasic calcium phosphate/ poly-DL-lactide-co-glycolide/biostimulative agent] filler for reconstruction of bone tissue changed by osteoporosis. Journal of Materials Science: Materials in Medicine, 2005, 16, 621-626.	1.7	29
59	The Growth of Silver Nanoparticles and Their Combination with Hydroxyapatite To Form Composites via a Sonochemical Approach. Crystal Growth and Design, 2011, 11, 3802-3812.	1.4	29
60	Estimation of elastic properties of a particulate polymer composite using a face-centered cubic FE model. Materials Letters, 2004, 58, 2437-2441.	1.3	28
61	An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres. Nanotechnology, 2009, 20, 335102.	1.3	28
62	The effect of Sn for Ti substitution on the average and local crystal structure of BaTi _{1â^`} <i>_x</i> Sn <i>_x</i> O ₃ (0 ≤i>x㉤0.20). Journal of Applied Crystallography, 2014, 47, 999-1007.	1.9	28
63	Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis. Materials Letters, 1995, 24, 369-376.	1.3	25
64	Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. Colloids and Surfaces B: Biointerfaces, 2016, 148, 629-639.	2.5	25
65	Calcium Hydroxyapatite Thin Films on Titanium Substrates Prepared by Ultrasonic Spray Pyrolysis. Materials Transactions, 2005, 46, 228-235.	0.4	23
66	Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis. Materials Chemistry and Physics, 2008, 107, 28-32.	2.0	23
67	Repair of Bone Tissue Affected by Osteoporosis with Hydroxyapatite-Poly-L-lactide (HAp-PLLA) With and Without Blood Plasma. Journal of Biomaterials Applications, 2005, 20, 179-190.	1.2	22
68	Refractive Index of Organic Systems Doped with Nano-Objects. Materials and Manufacturing Processes, 2008, 23, 552-556.	2.7	22
69	Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. RSC Advances, 2019, 9, 17165-17178.	1.7	22
70	Densification, Microstructure, and Electrical Properties of BaTiO ₃ (BT) Ceramics Prepared from Ultrasonically De-Agglomerated BT Powders. Materials and Manufacturing Processes, 2009, 24, 1114-1123.	2.7	21
71	The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly(l-lactide)–polyethyleneimine magnetic particles. Colloids and Surfaces B: Biointerfaces, 2013, 109, 236-243.	2.5	21
72	Electrical properties of barium titanate stannate functionally graded materials. Journal of the European Ceramic Society, 2010, 30, 1427-1435.	2.8	20

#	Article	IF	CITATIONS
73	Poly(d,l-lactide-co-glycolide)/hydroxyapatite core–shell nanospheres. Part 3: Properties of hydroxyapatite nano-rods and investigation of a distribution of the drug within the composite. Colloids and Surfaces B: Biointerfaces, 2011, 87, 226-235.	2.5	20
74	Size effect of calcium phosphate coated with polyâ€ <scp>DL</scp> ″actide― <i>co</i> â€glycolide on healing processes in bone reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 108-117.	1.6	19
75	ZnO micro and nanocrystals with enhanced visible light absorption. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1038-1045.	1.7	19
76	Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process. Journal of Materials Science, 1993, 28, 5211-5217.	1.7	18
77	Influence of aerosol formation mechanism by an ultrasonic field on particle size distribution of ceramic powders. Ultrasonics Sonochemistry, 1999, 6, 157-169.	3.8	18
78	The master sintering curves for BaTi0.975Sn0.025O3/BaTi0.85Sn0.15O3 functionally graded materials. Journal of the European Ceramic Society, 2009, 29, 2309-2316.	2.8	17
79	New insights into BaTi _{l–<i>x</i>} Sn _{<i>x</i>} O ₃ (O ≤i>x â‰₱Tj 1726-1733.	ETQq1 1 1.9	0.784314 rg 17
80	ROS-inducing potential, influence of different porogens and in vitro degradation of poly (D,L-lactide-co-glycolide)-based material. EXPRESS Polymer Letters, 2011, 5, 996-1008.	1.1	17
81	Production of atomized metal and alloy powders by the rotating electrode process. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1990, 29, 673-683.	0.1	16
82	The influence of hydroxyapatite modification on the cross-linking of polydimethylsiloxane/HAp composites. Colloids and Surfaces B: Biointerfaces, 2004, 39, 181-186.	2.5	16
83	Preparation and Characterization of Poly(D,L-Lactide-co-Glycolide) Nanoparticles Containing Ascorbic Acid. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-8.	3.0	16
84	Processing Route to Fully Dense Nanostructured HAp Bioceramics: From Powder Synthesis to Sintering. Journal of the American Ceramic Society, 2012, 95, 3394-3402.	1.9	16
85	Stereological analysis of the poly-(dl-lactide-co-glycolide) submicron sphere prepared by solvent/non-solvent chemical methods and centrifugal processing. Journal of Materials Science: Materials in Medicine, 2007, 18, 1339-1344.	1.7	15
86	Facile synthesis of poly(ε-caprolactone) micro and nanospheres using different types of polyelectrolytes as stabilizers under ambient and elevated temperature. Composites Part B: Engineering, 2013, 45, 1471-1479.	5.9	15
87	Formation of silver iodide particles from thermodynamically stable clusters using ultrasonic spray pyrolysis. Journal of the European Ceramic Society, 2007, 27, 927-929.	2.8	14
88	The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite. Ceramics International, 2015, 41, 6753-6758.	2.3	14
89	The structure of paramagnetic centres and the formation of defects in the B-C, B-C-Ti and B-C-Cr systems. Journal of Materials Science, 1980, 15, 1041-1048.	1.7	13
90	ZnO Varistors Prepared by Direct Mixing of Constituent Phases. Materials Transactions, JIM, 2000, 41, 1226-1231.	0.9	13

#	Article	IF	CITATIONS
91	Effect of PEO molecular weight on sunlight induced photocatalytic activity of ZnO/PEO composites. Solar Energy, 2016, 127, 124-135.	2.9	13
92	Peculiarities in sintering behavior of Ca-deficient hydroxyapatite nanopowders. Materials Letters, 2012, 68, 331-335.	1.3	12
93	Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites. Journal of Nanoscience and Nanotechnology, 2015, 15, 1538-1542.	0.9	12
94	Structure and characteristics of the hot pressed hydroxyapatite/poly-L-lactide composite. Science of Sintering, 2002, 34, 79-93.	0.5	12
95	Tailor made synthesis of Q-TiO2 powder by using quantum dots as building blocks. Scripta Materialia, 1998, 10, 333-339.	0.5	11
96	Synthesis of nanostructured mullite from xerogel and aerogel obtained by the non-hydrolytic sol-gel method. Scripta Materialia, 1999, 12, 147-150.	0.5	11
97	Modeling of nanostructural design of ultrafine mullite powder particles obtained by ultrasonic spray pyrolysis. Scripta Materialia, 1999, 12, 349-352.	0.5	11
98	Stress analysis in hydroxyapatite/poly-l-lactide composite biomaterials. Computational Materials Science, 2001, 20, 275-283.	1.4	11
99	Poly(d,l-lactide-co-glycolide)/hydroxyapatite core–shell nanospheres. Part 4: A change of the surface properties during degradation process and the corresponding in vitro cellular response. Colloids and Surfaces B: Biointerfaces, 2012, 91, 144-153.	2.5	11
100	Rapid crystallization of LiFePO4 particles by facile emulsion-mediated solvothermal synthesis. Powder Technology, 2012, 219, 128-134.	2.1	11
101	Synthesis of poly(É-caprolactone) nanospheres in the presence of the protective agent poly(glutamic) Tj ETQq1 Colloids and Surfaces B: Biointerfaces, 2014, 117, 414-424.	l 0.78431 2.5	4 rgBT /Ove 11
102	Potential barrier degradation at the grain boundary of ZnO-based nonlinear resistors. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1988, 150, 175-178.	0.9	10
103	The Formation and Characterization of Nanocrystalline Phases by Mechanical Milling of Biphasic Calcium Phosphate/Poly-L-Lactide Biocomposite. Materials Transactions, 2006, 47, 2980-2986.	0.4	10
104	Biodegradable composites based on nanocrystalline calcium phosphate and bioresorbable polymers. Advances in Applied Ceramics, 2008, 107, 142-147.	0.6	10
105	PHOTOREFRACTIVE AND PHOTOCONDUCTIVE FEATURES OF THE NANOSTRUCTURED MATERIALS. International Journal of Modern Physics B, 2010, 24, 695-702.	1.0	10
106	Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. Journal of Power Sources, 2014, 265, 75-80.	4.0	10
107	Nanostructured constituents of ZnO-based varistors prepared by mechanical attrition. Scripta Materialia, 1994, 4, 149-157.	0.5	9
108	Preparation of smallest microparticles of polyâ€< scp>D,L″actide by modified precipitation method: Influence of the process parameters. Microscopy Research and Technique, 2008, 71, 86-92.	1.2	9

#	Article	IF	CITATIONS
109	EPR study of the influence of defect structure on electrical properties of ZnO varistors. Journal of Materials Science, 1985, 20, 1660-1670.	1.7	8
110	Structural and magnetic characterization of LiMn1.825Cr0.175O4 spinel obtained by ultrasonic spray pyrolysis. Materials Research Bulletin, 2007, 42, 515-522.	2.7	8
111	Influence of ultrasonic processing on the macromolecular properties of poly (d,l-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite. Ultrasonics Sonochemistry, 2010, 17, 902-908.	3.8	8
112	Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method. Powder Technology, 2013, 246, 539-544.	2.1	8
113	<i>In Vitro</i> Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties. Journal of Nanoscience and Nanotechnology, 2016, 16, 1420-1428.	0.9	8
114	Enhanced high-temperature electrical response of hydroxyapatite upon grain size refinement. Materials Research Bulletin, 2015, 61, 534-538.	2.7	7
115	Nanomaterial N-CP/DLPLG as potent1onal tissue graft in osteoreparation in combination with bone marrow cells on subcutaneous implantation model. Hemijska Industrija, 2008, 62, 205-210.	0.3	6
116	Crystallization kinetics of amorphous Ni78P22 powders and hydrogen adsorption on both amorphous and crystal alloy powders. Journal of Materials Science, 1988, 23, 4076-4080.	1.7	5
117	Electronic paramagnetic resonance (EPR) study of the structure of ZnO varistors prepared by various chemical methods. Journal of Materials Science, 1990, 25, 4324-4330.	1.7	5
118	Influence of different degradation medium on release of ascorbic acid from poly(D,L-lactide-co-glycolide) nano- and microspheres. Russian Journal of Physical Chemistry A, 2009, 83, 1457-1460.	0.1	5
119	Surface characterisation of PLLA polymer in HAp/PLLA biocomposite material by means of nanoindentation and artificial neural networks. Advances in Applied Ceramics, 2010, 109, 65-70.	0.6	5
120	Processing of compact materials by the use of self-propagating high-temperature synthesis and pseudo-hot isostatic pressing. Materials Letters, 1992, 13, 391-395.	1.3	4
121	A novel approach to control of ZnO-based varistor microstructures at the nanometre level. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 168, 253-256.	2.6	4
122	Apatite Formation on Nanomaterial Calcium Phosphate/poly-DL-lactide-co-glycolide in Simulated Body Fluid. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 43-48.	0.7	4
123	In vitro evaluation of a multifunctional nano drug delivery system based on tigecycline-loaded calcium-phosphate/ poly-DL-lactide-co-glycolide. Bio-Medical Materials and Engineering, 2014, 24, 1647-1658.	0.4	4
124	Determination of thermodynamic interactions of poly(l-lactide) and biphasic calcium phosphate/poly(l-lactide) composite by inverse gas chromatography at infinite dilution. Journal of Materials Science, 2014, 49, 5076-5086.	1.7	4
125	Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose. Journal of Alloys and Compounds, 2019, 786, 912-919.	2.8	4
126	Effects of hydroxyapatite@poly-lactide-co-glycolide nanoparticles combined with Pb and Cd on liver and kidney parenchyma after the reconstruction of mandibular bone defects. Toxicology Research, 2019. 8, 287-296.	0.9	4

#	Article	IF	CITATIONS
127	Ectopic osteogenesis and hematopoiesis after implantantion of bone marrow cells seeded on HAP/PLLA scaffold. Hemijska Industrija, 2009, 63, 301-307.	0.3	4
128	Finite Element Modeling of Mechanical Properties of Particulate Composite Biomaterials. Materials Science Forum, 2003, 413, 257-262.	0.3	3
129	Nanoindentation of In Situ Polymers in Hydroxyapatite/Poly-L-Lactide Biocomposites. Materials Science Forum, 2006, 518, 501-506.	0.3	3
130	NANOSTRUCTURED ZrO2 POWDER SYNTHESIZED BY ULTRASONIC SPRAY PYROLYSIS. Surface Review and Letters, 2007, 14, 915-919.	0.5	3
131	Electronic structure and X-ray spectroscopic properties of YbNi2P2. Journal of Electron Spectroscopy and Related Phenomena, 2016, 212, 5-10.	0.8	3
132	The use of methylcellulose for the synthesis of Li2FeSiO4/C composites. Cellulose, 2016, 23, 239-246.	2.4	3
133	Synthesis and optical properties of ZnO and ZnO/PEO nanonsructured powders. Tehnika, 2016, 71, 9-15.	0.0	3
134	Ground-state magnetism of chromium-substituted LiMn2O4 spinel. Journal of Magnetism and Magnetic Materials, 2008, 320, 943-949.	1.0	2
135	Morphological changes of poly(Dlâ€lactideâ€ <i>co</i> â€glycolide) nanoâ€particles containing ascorbic acid during <i>in vitro</i> degradation process. Journal of Microscopy, 2008, 232, 511-516.	0.8	2
136	From molecules to nanoparticles to functional materials. Journal of the Serbian Chemical Society, 2020, 85, 1383-1403.	0.4	2
137	Crystallization kinetics and thermal stability of shock-compacted amorphous Ni78P22. Materials Letters, 1990, 9, 215-218.	1.3	1
138	Kinetics and mechanism of sintering of sodium fluoride crystals. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1972, 11, 1021-1027.	0.1	0
139	Grain growth during the sintering of Nb2O5. Metallography, 1973, 6, 171-175.	0.4	0
140	Effects of hydrogen on the dislocation structure of nickel. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1974, 13, 148-151.	0.1	0
141	The influence of mangan ion valency state on formation of microstructural constituents during sintering of magnesium oxide. Metallography, 1976, 9, 293-298.	0.4	0
142	Shock compaction of AlMgSi0.5 spheres. Journal of Materials Science, 1995, 30, 2950-2955.	1.7	0
143	Scanning Electron Microscopy Analysis of Changes of Hydroxiapatite/Poly-L-Lactide with Different Molecular Weight of PLLAaAfter Intraperitoneal Implantation. Acta Veterinaria, 2016, 66, 234-244.	0.2	0
144	Synthesis of Li2FeSiO4/C composite by sol-gel citric acid assisted method. Tehnika, 2016, 71, 181-184.	0.0	0

#	Article	IF	CITATIONS
145	Molecular designing of nanoparticles and functional materials. Journal of the Serbian Chemical Society, 2017, 82, 607-625.	0.4	0
146	Electronic structure and x-ray spectra of the Ce2ScSi2 compound. Journal of Physical Studies, 2020, 24, .	0.2	0