
Raina M Maier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Science of the Total Environment, 2022, 803, 150006.	8.0	23
2	Removal of uranium from contaminated groundwater using monorhamnolipids and ion flotation. Journal of Environmental Management, 2022, 301, 113835.	7.8	20
3	Double-Network Hydrogel: A Potential Practical Adsorbent for Critical Metals Extraction and Recovery from Water. Environmental Science & Technology, 2022, 56, 4715-4717.	10.0	12
4	Metal Lability and Mass Transfer Response to Direct-Planting Phytostabilization of Pyritic Mine Tailings. Minerals (Basel, Switzerland), 2022, 12, 757.	2.0	2
5	Life-history strategies of soil microbial communities in an arid ecosystem. ISME Journal, 2021, 15, 649-657.	9.8	84
6	Arid Ecosystem Vegetation Canopy-Gap Dichotomy: Influence on Soil Microbial Composition and Nutrient Cycling Functional Potential. Applied and Environmental Microbiology, 2021, 87, .	3.1	16
7	Alleviating Environmental Health Disparities Through Community Science and Data Integration. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	5
8	Recovery of Critical Metals from Aqueous Sources. ACS Sustainable Chemistry and Engineering, 2021, 9, 11616-11634.	6.7	43
9	Contrasting Community Assembly Forces Drive Microbial Structural and Potential Functional Responses to Precipitation in an Incipient Soil System. Frontiers in Microbiology, 2021, 12, 754698.	3.5	4
10	Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Geochimica Et Cosmochimica Acta, 2020, 286, 306-323.	3.9	19
11	Biodegradability and Toxicity of Cellobiosides and Melibiosides. Journal of Surfactants and Detergents, 2020, 23, 715-724.	2.1	4
12	New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition. Sustainability, 2020, 12, 4209.	3.2	2
13	Soil Microbiome Dynamics During Pyritic Mine Tailing Phytostabilization: Understanding Microbial Bioindicators of Soil Acidification. Frontiers in Microbiology, 2019, 10, 1211.	3.5	36
14	Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering. Scientific Reports, 2019, 9, 15006.	3.3	22
15	Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings. Frontiers in Microbiology, 2019, 10, 1209.	3.5	24
16	Assessing Microbial Community Patterns During Incipient Soil Formation From Basalt. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 941-958.	3.0	16
17	Uptake and Fractionation of Thallium by <i>Brassica juncea</i> in a Geogenic Thallium-Amended Substrate. Environmental Science & Technology, 2019, 53, 2441-2449.	10.0	31
18	Biodegradability and toxicity of monorhamnolipid biosurfactant diastereomers. Journal of Hazardous Materials, 2019, 364, 600-607.	12.4	37

#	Article	IF	CITATIONS
19	Mechanisms of Arsenic Sequestration by <i>Prosopis juliflora</i> during the Phytostabilization of Metalliferous Mine Tailings. Environmental Science & Technology, 2018, 52, 1156-1164.	10.0	32
20	Phytoremediation Reduces Dust Emissions from Metal(loid)-Contaminated Mine Tailings. Environmental Science & Technology, 2018, 52, 5851-5858.	10.0	54
21	Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Science of the Total Environment, 2018, 618, 357-368.	8.0	32
22	lon Flotation of La3+, Cd2+, and Cs+ using Monorhamnolipid Collector. Colloids and Interfaces, 2018, 2, 43.	2.1	17
23	Trace element mobilization during incipient bioweathering of four rock types. Geochimica Et Cosmochimica Acta, 2018, 234, 98-114.	3.9	20
24	Using ESS tudios Microbial Growth Modeling Program to Improve Student Comprehension of Microbial Growth and Its Underlying Mathematics. Journal of Microbiology and Biology Education, 2018, 19, .	1.0	0
25	Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis. Scientific Reports, 2017, 7, 43208.	3.3	31
26	Bacterial Rhizoplane Colonization Patterns of Buchloe dactyloides Growing in Metalliferous Mine Tailings Reflect Plant Status and Biogeochemical Conditions. Microbial Ecology, 2017, 74, 853-867.	2.8	20
27	Transferable Training Modules. Family and Community Health, 2017, 40, 306-315.	1.1	2
28	Significant Impacts of Increasing Aridity on the Arid Soil Microbiome. MSystems, 2017, 2, .	3.8	141
29	Synthesis and Characterization of Four Diastereomers of Monorhamnolipids. Journal of the American Chemical Society, 2017, 139, 5125-5132.	13.7	33
30	Evolution of Aggregate Structure in Solutions of Anionic Monorhamnolipids: Experimental and Computational Results. Langmuir, 2017, 33, 7412-7424.	3.5	27
31	Rhamnolipid biosurfactant complexation of rare earth elements. Journal of Hazardous Materials, 2017, 340, 171-178.	12.4	32
32	Bacterial microbiota of the upper respiratory tract and childhood asthma. Journal of Allergy and Clinical Immunology, 2017, 139, 826-834.e13.	2.9	165
33	Plants from the abandoned Nacozari mine tailings: evaluation of their phytostabilization potential. PeerJ, 2017, 5, e3280.	2.0	24
34	Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Science of the Total Environment, 2016, 565, 451-461.	8.0	102
35	Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME) Tj ETQq1	10.71864314	∙ rg₿T /Over c
36	Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. New England Journal of Medicine, 2016, 375, 411-421.	27.0	745

#	Article	IF	CITATIONS
37	Soil Lysimeter Excavation for Coupled Hydrological, Geochemical, and Microbiological Investigations. Journal of Visualized Experiments, 2016, , .	0.3	4
38	Microorganisms and Organic Pollutants. , 2015, , 377-413.		31
39	Microbial Communication. , 2015, , 461-481.		1
40	Biogeochemical Cycling. , 2015, , 339-373.		14
41	Physiological Methods. , 2015, , 213-243.		2
42	Bacterial Growth. , 2015, , 37-56.		50
43	Aquatic Environments. , 2015, , 111-138.		18
44	The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health. Environmental Health Perspectives, 2015, 123, 909-918.	6.0	27
45	Extreme Environments. , 2015, , 139-153.		3
46	5. Bacterial and Archaeal Diversity on Cave Speleothem and Rock Surfaces: A Carbonate Cave Case Study from Kartchner Caverns. , 2015, , 105-124.		1
47	Assessing Fungal Community Structure from Mineral Surfaces in Kartchner Caverns Using Multiplexed 454 Pyrosequencing. Microbial Ecology, 2015, 70, 175-187.	2.8	15
48	Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Applied Geochemistry, 2015, 62, 131-149.	3.0	65
49	Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza. Biogeochemistry, 2015, 124, 187-203.	3.5	57
50	Abundance and Activity of 16S rRNA, <i>AmoA</i> and <i>NifH</i> Bacterial Genes During Assisted Phytostabilization of Mine Tailings. International Journal of Phytoremediation, 2015, 17, 493-502.	3.1	25
51	Building a co-created citizen science program with gardeners neighboring a superfund site: The Gardenroots case study. International Public Health Journal, 2015, 7, .	1.0	23
52	Socially responsible mining: the relationship between mining and poverty, human health and the environment. Reviews on Environmental Health, 2014, 29, 83-9.	2.4	22
53	Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME Journal, 2014, 8, 478-491.	9.8	114
54	Environmental Research Translation: Enhancing interactions with communities at contaminated sites. Science of the Total Environment, 2014, 497-498, 651-664.	8.0	51

#	Article	IF	CITATIONS
55	Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: A mesocosm experiment. Science of the Total Environment, 2014, 500-501, 314-324.	8.0	67
56	Effect of fatty acid substrate chain length on Pseudomonas aeruginosa ATCC 9027 monorhamnolipid yield and congener distribution. Process Biochemistry, 2014, 49, 989-995.	3.7	42
57	Surficial weathering of iron sulfide mine tailings under semi-arid climate. Geochimica Et Cosmochimica Acta, 2014, 141, 240-257.	3.9	79
58	Profiling Bacterial Diversity and Taxonomic Composition on Speleothem Surfaces in Kartchner Caverns, AZ. Microbial Ecology, 2013, 65, 371-383.	2.8	78
59	Home gardening near a mining site in an arsenic-endemic region of Arizona: Assessing arsenic exposure dose and risk via ingestion of home garden vegetables, soils, and water. Science of the Total Environment, 2013, 454-455, 373-382.	8.0	62
60	A New Standard-Based Polynomial Interpolation (SBPIn) method to address gel-to-gel variability for the comparison of multiple denaturing gradient gel electrophoresis profile matrices. Journal of Microbiological Methods, 2013, 92, 173-177.	1.6	5
61	Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. Journal of Microbiological Methods, 2013, 92, 256-263.	1.6	73
62	A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils. Science of the Total Environment, 2013, 443, 299-306.	8.0	89
63	Phytotechnologies – Preventing Exposures, Improving Public Health. International Journal of Phytoremediation, 2013, 15, 889-899.	3.1	46
64	Procesos erosivos en jales de la Presa I de Nacozari de GarcÃa, Sonora y su efecto en la dispersión de contaminantes. Boletin De La Sociedad Geologica Mexicana, 2013, 65, 27-38.	0.3	9
65	Fatty Acid Cosubstrates Provide β-Oxidation Precursors for Rhamnolipid Biosynthesis in Pseudomonas aeruginosa, as Evidenced by Isotope Tracing and Gene Expression Assays. Applied and Environmental Microbiology, 2012, 78, 8611-8622.	3.1	45
66	Minimally CompetentLewisAcid Catalysts: Indium(III) and Bismuth(III) Salts Produce Rhamnosides (=6-Deoxymannosides) in High Yield and Purity. Helvetica Chimica Acta, 2012, 95, 2652-2659.	1.6	13
67	Factors Influencing Observed Variations in the Structure of Bacterial Communities On Calcite Formations in Kartchner Caverns, AZ, USA. Geomicrobiology Journal, 2012, 29, 422-434.	2.0	14
68	Geochemical Weathering Increases Lead Bioaccessibility in Semi-Arid Mine Tailings. Environmental Science & Technology, 2012, 46, 5834-5841.	10.0	48
69	Response of Key Soil Parameters during Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species. Environmental Science & Technology, 2012, 46, 1019-1027.	10.0	73
70	Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles, 2012, 16, 553-566.	2.3	182
71	Changes in Zinc Speciation with Mine Tailings Acidification in a Semiarid Weathering Environment. Environmental Science & Technology, 2011, 45, 7166-7172.	10.0	19
72	Bacterial and Archaeal Community Structure of Two Adjacent Calcite Speleothems in Kartchner Caverns, Arizona, USA. Geomicrobiology Journal, 2011, 28, 99-117.	2.0	45

#	Article	IF	CITATIONS
73	Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Science of the Total Environment, 2011, 409, 1009-1016.	8.0	100
74	Biosurfactants: A General Overview. Microbiology Monographs, 2011, , 1-11.	0.6	58
75	Fungal communities on speleothem surfaces in Kartchner Caverns, Arizona, USA. International Journal of Speleology, 2011, 40, 65-77.	1.0	31
76	Proteomics Analyses of the Opportunistic Pathogen <i>Burkholderia vietnamiensis</i> Using Protein Fractionations and Mass Spectrometry. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	12
77	Growth of Quailbush in Acidic, Metalliferous Desert Mine Tailings: Effect of Azospirillum brasilense Sp6 on Biomass Production and Rhizosphere Community Structure. Microbial Ecology, 2010, 60, 915-927.	2.8	42
78	Cadmium effects on transcriptional expression of rhlB/rhlC genes and congener distribution of monorhamnolipid and dirhamnolipid in Pseudomonas aeruginosa IGB83. Applied Microbiology and Biotechnology, 2010, 88, 953-963.	3.6	20
79	Synthesis and biological activities of flavolipids. Tetrahedron, 2010, 66, 9107-9112.	1.9	1
80	Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environmental and Experimental Botany, 2010, 69, 343-352.	4.2	87
81	Environmental Determinants of and Impact on Childhood Asthma by the Bacterial Community in Household Dust. Applied and Environmental Microbiology, 2010, 76, 2663-2667.	3.1	56
82	Evaporative Deposition Patterns of Bacteria from a Sessile Drop: Effect of Changes in Surface Wettability Due to Exposure to a Laboratory Atmosphere. Langmuir, 2010, 26, 7293-7298.	3.5	20
83	Effects of Compost on Colonization of Roots of Plants Grown in Metalliferous Mine Tailings, as Examined by Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2009, 75, 842-847.	3.1	20
84	Optimization of plant growth-promoting bacteria-assisted phytostabilization of mine tailings. Soil Biology and Biochemistry, 2009, 41, 1734-1740.	8.8	65
85	Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures. FEMS Microbiology Ecology, 2009, 68, 72-85.	2.7	51
86	Immunological Methods. , 2009, , 225-241.		4
87	The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere, 2009, 77, 140-147.	8.2	129
88	Changes in lead and zinc lability during weathering-induced acidification of desert mine tailings: Coupling chemical and micro-scale analyses. Applied Geochemistry, 2009, 24, 2234-2245.	3.0	42
89	Introduction to Environmental Microbiology. , 2009, , 3-7.		59

90 Environmental Sample Collection and Processing. , 2009, , 137-155.

1

#	Article	IF	CITATIONS
91	Microorganisms. , 2009, , 9-36.		6
92	Bacterial Growth. , 2009, , 37-54.		38
93	Extreme Environments. , 2009, , 123-134.		0
94	Microorganisms and Metal Pollutants. , 2009, , 421-441.		12
95	Biogeochemical Cycling. , 2009, , 287-318.		5
96	Aquatic Environments. , 2009, , 103-122.		6
97	Earth Environments. , 2009, , 57-82.		6
98	Microscopic Techniques. , 2009, , 157-172.		0
99	Microorganisms and Organic Pollutants. , 2009, , 387-420.		10
100	Physiological Methods. , 2009, , 191-223.		6
101	Nucleic Acid–Based Methods of Analysis. , 2009, , 243-284.		2
102	Consequences of Biogeochemical Cycles Gone Wild. , 2009, , 319-333.		2
103	Microbial Communication: Bacteria–Bacteria and Bacteria–Host. , 2009, , 335-346.		0
104	Bacterial Communities in Natural Ecosystems. , 2009, , 347-356.		1
105	Microbial Transport. , 2009, , 365-383.		3
106	Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Biotechnology, 2008, 7, 47-59.	8.1	368
107	Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology. Environmental Health Perspectives, 2008, 116, 278-283.	6.0	778
108	Directly Measuring Adhesive and Elastic Properties of Bacteria Using a Surface Force Apparatus. ACS Symposium Series, 2008, , 217-229.	0.5	0

#	Article	IF	CITATIONS
109	Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings. Environmental Science & Technology, 2008, 42, 2079-2084.	10.0	115
110	Efficient Purification of the Biosurfactant Viscosin from <i>Pseudomonas libanensis</i> Strain M9-3 and Its Physicochemical and Biological Properties. Journal of Natural Products, 2008, 71, 1011-1015.	3.0	100
111	Characterization of a Bacterial Community in an Abandoned Semiarid Lead-Zinc Mine Tailing Site. Applied and Environmental Microbiology, 2008, 74, 3899-3907.	3.1	162
112	Phytostabilization Potential of Quailbush for Mine Tailings. Journal of Environmental Quality, 2007, 36, 245-253.	2.0	141
113	Bacterial Community Changes during Plant Establishment at the San Pedro River Mine Tailings Site. Journal of Environmental Quality, 2007, 36, 1249-1259.	2.0	80
114	Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. Chemosphere, 2007, 66, 1634-1642.	8.2	71
115	Culturable Microbial Diversity and the Impact of Tourism in Kartchner Caverns, Arizona. Microbial Ecology, 2007, 53, 30-42.	2.8	95
116	Determination of the Acid Dissociation Constant of the Biosurfactant Monorhamnolipid in Aqueous Solution by Potentiometric and Spectroscopic Methods. Analytical Chemistry, 2006, 78, 7649-7658.	6.5	85
117	Influence of a nonaqueous phase liquid (NAPL) on biodegradation of phenanthrene. Biodegradation, 2006, 17, 423-435.	3.0	12
118	Bacterial Community Structure in the Hyperarid Core of the Atacama Desert, Chile. Applied and Environmental Microbiology, 2006, 72, 7902-7908.	3.1	160
119	BIODEGRADATION DURING CONTAMINANT TRANSPORT IN POROUS MEDIA: 7. IMPACT OF MULTIPLE-DEGRADER COMMUNITY DYNAMICS. Environmental Toxicology and Chemistry, 2005, 24, 2806.	4.3	2
120	Real-Time, in Situ Monitoring of Bioactive Zone Dynamics in Heterogeneous Systems. Environmental Science & Technology, 2005, 39, 8898-8905.	10.0	9
121	Influence of hydroxypropyl-β-cyclodextrin (HPCD) on the bioavailability and biodegradation of pyrene. Chemosphere, 2005, 60, 725-728.	8.2	21
122	The influence of system complexity on bacterial transport in saturated porous media. Journal of Contaminant Hydrology, 2004, 74, 19-38.	3.3	12
123	USE OF CYCLODEXTRIN AND CALCIUM CHLORIDE FOR ENHANCED REMOVAL OF MERCURY FROM SOIL. Environmental Toxicology and Chemistry, 2004, 23, 1888.	4.3	7
124	Bacterially derived biopolymers as wood adhesives. International Journal of Adhesion and Adhesives, 2004, 24, 495-502.	2.9	36
125	Employing a novel fiber optic detection system to monitor the dynamics of in situ lux bioreporter activity in porous media: system performance update. Analytica Chimica Acta, 2004, 525, 63-74.	5.4	12
126	Structure and Characterization of Flavolipids, a Novel Class of Biosurfactants Produced by Flavobacterium sp. Strain MTN11. Applied and Environmental Microbiology, 2004, 70, 114-120.	3.1	111

#	Article	IF	CITATIONS
127	The influence of substrate and electron acceptor availability on bioactive zone dynamics in porous media. Journal of Contaminant Hydrology, 2003, 66, 219-237.	3.3	7
128	Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environmental Microbiology, 2003, 5, 888-895.	3.8	95
129	Distribution of Biosurfactant-Producing Bacteria in Undisturbed and Contaminated Arid Southwestern Soils. Applied and Environmental Microbiology, 2003, 69, 3280-3287.	3.1	290
130	Biosurfactants: Evolution and Diversity in Bacteria. Advances in Applied Microbiology, 2003, 52, 101-121.	2.4	99
131	Comparative electrochemical inactivation of bacteria and bacteriophage. Water Research, 2003, 37, 2291-2300.	11.3	167
132	Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicology and Environmental Safety, 2003, 56, 140-147.	6.0	90
133	Effect of Temperature, pH, and Initial Cell Number on luxCDABE and nah Gene Expression during Naphthalene and Salicylate Catabolism in the Bioreporter Organism Pseudomonas putida RB1353. Applied and Environmental Microbiology, 2003, 69, 2209-2216.	3.1	28
134	Characterization of Lead Removal from Contaminated Soils by Nontoxic Soilâ€Washing Agents. Journal of Environmental Quality, 2003, 32, 899-908.	2.0	90
135	Impact of metals on the biodegradation of organic pollutants Environmental Health Perspectives, 2003, 111, 1093-1101.	6.0	310
136	Characterization of Lead Removal from Contaminated Soils by Nontoxic Soil-Washing Agents. Journal of Environmental Quality, 2003, 32, 899.	2.0	22
137	Biosynthesis and Applications of Glycolipid and Lipopeptide Biosurfactants. , 2002, , .		3
138	Biodegradation during Contaminant Transport in Porous Media. Journal of Environmental Quality, 2002, 31, 1824-1830.	2.0	17
139	Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environmental Toxicology and Chemistry, 2002, 21, 2075-2079.	4.3	40
140	A comparison of chelatorâ€facilitated metal uptake by a halophyte and a glycophyte. Environmental Toxicology and Chemistry, 2002, 21, 2698-2704.	4.3	69
141	Application of a reverse transcription-PCR assay to monitor regulation of the catabolic nahAc gene during phenanthrene degradation. Biodegradation, 2002, 13, 251-260.	3.0	24
142	Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environmental Toxicology and Chemistry, 2002, 21, 2075-9.	4.3	11
143	A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environmental Toxicology and Chemistry, 2002, 21, 2698-704.	4.3	9
144	Stability Constants for the Complexation of Various Metals with a Rhamnolipid Biosurfactant. Journal of Environmental Quality, 2001, 30, 479-485.	2.0	172

#	Article	IF	CITATIONS
145	Biosurfactant-enhanced solubilization of NAPL mixtures. Journal of Contaminant Hydrology, 2001, 48, 45-68.	3.3	64
146	Biodegradation during contaminant transport in porous media: 4. Impact of microbial lag and bacterial cell growth. Journal of Contaminant Hydrology, 2001, 50, 225-242.	3.3	17
147	Fiber optic detection of in situ lux reporter gene activity in porous media: system design and performance. Analytica Chimica Acta, 2000, 422, 121-130.	5.4	22
148	Rhamnolipid-Enhanced Mineralization of Phenanthrene in Organic-Metal Co-Contaminated Soils. Bioremediation Journal, 2000, 4, 295-308.	2.0	130
149	Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 2000, 54, 625-633.	3.6	488
150	A Rhamnolipid Biosurfactant Reduces Cadmium Toxicity during Naphthalene Biodegradation. Applied and Environmental Microbiology, 2000, 66, 4585-4588.	3.1	150
151	Rhamnolipid-Induced Removal of Lipopolysaccharide from Pseudomonas aeruginosa : Effect on Cell Surface Properties and Interaction with Hydrophobic Substrates. Applied and Environmental Microbiology, 2000, 66, 3262-3268.	3.1	377
152	Development of an agar lift–DNA/DNA hybridization technique for use in visualization of the spatial distribution of Eubacteria on soil surfaces. Journal of Microbiological Methods, 1999, 38, 107-117.	1.6	7
153	Biodegradation during Contaminant Transport in Porous Media. 2. The Influence of Physicochemical Factors. Environmental Science & Technology, 1999, 33, 96-103.	10.0	33
154	Factors Influencing Expression of <i>luxCDABE</i> and <i>nah</i> Genes in <i>Pseudomonas putida</i> RB1353(NAH7, pUTK9) in Dynamic Systems. Applied and Environmental Microbiology, 1999, 65, 3473-3482.	3.1	48
155	Cyclodextrin-Enhanced Biodegradation of Phenanthrene. Environmental Science & Technology, 1998, 32, 1907-1912.	10.0	116
156	Influence of cation type, ionic strength, and pH on solubilization and mobilization of residual hydrocarbon by a biosurfactant. Journal of Contaminant Hydrology, 1998, 30, 265-279.	3.3	55
157	Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 1998, 32, 273-280.	1.6	324
158	Biosurfactant (Rhamnolipid) Sorption and the Impact on Rhamnolipid-Facilitated Removal of Cadmium from Various Soils under Saturated Flow Conditions. Environmental Science & Technology, 1998, 32, 776-781.	10.0	97
159	Effect of Rhamnolipids on the Dissolution, Bioavailability, and Biodegradation of Phenanthrene. Environmental Science & Technology, 1997, 31, 2211-2217.	10.0	205
160	Formation and Removal of Hydrocarbon Residual in Porous Media:Â Effects of Attached Bacteria and Biosurfactants. Environmental Science & Technology, 1997, 31, 1290-1294.	10.0	39
161	BIOSURFACTANTS: Their Identity and Potential Efficacy in the Biological Control of Zoosporic Plant Pathogens. Plant Disease, 1997, 81, 4-12.	1.4	277
162	A method for the detection and quantitation of PCR template in environmental samples by high performance liquid chromatography. Journal of Microbiological Methods, 1997, 28, 45-53.	1.6	3

#	Article	IF	CITATIONS
163	Biosurfactant-enhanced removal of residual hydrocarbon from soil. Journal of Contaminant Hydrology, 1997, 25, 157-170.	3.3	140
164	Title is missing!. Biodegradation, 1997, 8, 31-42.	3.0	26
165	Electron Microscopy of Rhamnolipid (Biosurfactant) Morphology: Effects of pH, Cadmium, and Octadecane. Journal of Colloid and Interface Science, 1995, 170, 569-574.	9.4	139
166	Optimization of arbitrarily primed PCR for the identification of bacterial isolates. Journal of Microbiological Methods, 1995, 24, 55-63.	1.6	6
167	Removal of Cadmium, Lead, and Zinc from Soil by a Rhamnolipid Biosurfactant. Environmental Science & Technology, 1995, 29, 2280-2285.	10.0	196
168	Complexation of Cadmium by a Rhamnolipid Biosurfactant. Environmental Science & Technology, 1994, 28, 2402-2406.	10.0	116
169	Reduction (dethiolation) of protein mixed-disulfides; distribution and specificity of dethiolating enzymes and N,Nâ€2-bis(2-chloroethyl)-N-nitrosourea inhibition of an NADPH-dependent cardiac dethiolase. Archives of Biochemistry and Biophysics, 1991, 287, 112-120.	3.0	15
170	Phosphorylase and creatine kinase modification by thiol-disulfide exchange and by xanthine oxidase-initiated S-thiolation. Archives of Biochemistry and Biophysics, 1990, 276, 355-363.	3.0	61
171	Sequential degradation of chlorophenols by photolytic and microbial treatment. Environmental Science & Technology, 1988, 22, 1215-1219.	10.0	47
172	Biological Techniques for Measuring Organic and Metal Contaminants in Environmental Samples. , 0, , 255-273.		1
173	Controlled Experiments of Hillslope Coevolution at the Biosphere 2 Landscape Evolution Observatory: Toward Prediction of Coupled Hydrological, Biogeochemical, and Ecological Change. , 0,		9