Alan Christoffels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2595811/publications.pdf

Version: 2024-02-01

99 papers

6,789 citations

30 h-index 80 g-index

105 all docs $\begin{array}{c} 105 \\ \\ \text{docs citations} \end{array}$

105 times ranked 10848 citing authors

#	Article	lF	Citations
1	Whole-Genome Shotgun Assembly and Analysis of the Genome of <i>Fugu rubripes</i> . Science, 2002, 297, 1301-1310.	12.6	1,432
2	The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43, 109-116.	21.4	1,091
3	The African coelacanth genome provides insights into tetrapod evolution. Nature, 2013, 496, 311-316.	27.8	612
4	Fugu Genome Analysis Provides Evidence for a Whole-Genome Duplication Early During the Evolution of Ray-Finned Fishes. Molecular Biology and Evolution, 2004, 21, 1146-1151.	8.9	490
5	Enabling the genomic revolution in Africa. Science, 2014, 344, 1346-1348.	12.6	361
6	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	12.6	254
7	A Comprehensive Approach to Clustering of Expressed Human Gene Sequence: The Sequence Tag Alignment and Consensus Knowledge Base. Genome Research, 1999, 9, 1143-1155.	5.5	175
8	Extensive Expansion of the Claudin Gene Family in the Teleost Fish, <i>Fugu rubripes</i> Research, 2004, 14, 1248-1257.	5.5	156
9	eVOC: A Controlled Vocabulary for Unifying Gene Expression Data. Genome Research, 2003, 13, 1222-1230.	5.5	144
10	STACK: Sequence Tag Alignment and Consensus Knowledgebase. Nucleic Acids Research, 2001, 29, 234-238.	14.5	112
11	Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in the Zebrafish Gonad and Brain. PLoS ONE, 2008, 3, e1791.	2.5	107
12	Chromosomal-Level Assembly of the Asian Seabass Genome Using Long Sequence Reads and Multi-layered Scaffolding. PLoS Genetics, 2016, 12, e1005954.	3.5	105
13	Mice and Men: Their Promoter Properties. PLoS Genetics, 2006, 2, e54.	3.5	95
14	DAMPD: a manually curated antimicrobial peptide database. Nucleic Acids Research, 2012, 40, D1108-D1112.	14.5	93
15	Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans. Nature Communications, 2017, 8, 2062.	12.8	88
16	Evidence for a common biological pathway linking three Parkinson's diseaseâ€causing genes: <i>parkin</i> , <i> PINK1</i> and <i>DJâ€1</i> European Journal of Neuroscience, 2015, 41, 1113-1125.	2.6	87
17	Gonad Differentiation in Zebrafish Is Regulated by the Canonical Wnt Signaling Pathway1. Biology of Reproduction, 2014, 90, 45.	2.7	79
18	HCVpro: Hepatitis C virus protein interaction database. Infection, Genetics and Evolution, 2011, 11, 1971-1977.	2.3	76

#	Article	IF	Citations
19	Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1084-1088.	7.1	54
20	Towards inferring the global movement of beak and feather disease virus. Virology, 2014, 450-451, 24-33.	2.4	53
21	Odorant and Gustatory Receptors in the Tsetse Fly Glossina morsitans morsitans. PLoS Neglected Tropical Diseases, 2014, 8, e2663.	3.0	51
22	Comparative Analysis of the Testis and Ovary Transcriptomes in Zebrafish by Combining Experimental and Computational Tools. Comparative and Functional Genomics, 2004, 5, 403-418.	2.0	48
23	Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy. ACS Omega, 2020, 5, 27480-27491.	3.5	48
24	Challenges of Biobanking in South Africa to Facilitate Indigenous Research in an Environment Burdened with Human Immunodeficiency Virus, Tuberculosis, and Emerging Noncommunicable Diseases. Biopreservation and Biobanking, 2013, 11, 347-354.	1.0	44
25	Comparative genomics in cyprinids: common carp ESTs help the annotation of the zebrafish genome. BMC Bioinformatics, 2006, 7, S2.	2.6	40
26	DDPC: Dragon Database of Genes associated with Prostate Cancer. Nucleic Acids Research, 2011, 39, D980-D985.	14.5	38
27	Database for exploration of functional context of genes implicated in ovarian cancer. Nucleic Acids Research, 2009, 37, D820-D823.	14.5	37
28	A glance at quality score: implication for de novo transcriptome reconstruction of Illumina reads. Frontiers in Genetics, 2014, 5, 17.	2.3	36
29	Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Scientific Reports, 2019, 9, 4405.	3.3	35
30	Taste and odorant receptors of the coelacanthâ€"A gene repertoire in transition. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 403-414.	1.3	31
31	Genome-Wide Comparative Analysis of Chemosensory Gene Families in Five Tsetse Fly Species. PLoS Neglected Tropical Diseases, 2016, 10, e0004421.	3.0	28
32	Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs. Malaria Journal, 2016, 15, 50.	2.3	28
33	Accelerating genomics-based surveillance for COVID-19 response in Africa. Lancet Microbe, The, 2020, 1 , e227-e228.	7.3	28
34	An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench). BMC Genetics, 2017, 18, 119.	2.7	27
35	Prediction of human- <i>Bacillus anthracis</i> protein–protein interactions using multi-layer neural network. Bioinformatics, 2018, 34, 4159-4164.	4.1	25
36	DDEC: Dragon database of genes implicated in esophageal cancer. BMC Cancer, 2009, 9, 219.	2.6	24

#	Article	IF	Citations
37	Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. PLoS ONE, 2018, 13, e0192678.	2.5	24
38	Resistance related metabolic pathways for drug target identification in Mycobacterium tuberculosis. BMC Bioinformatics, 2016, 17, 75.	2.6	23
39	Molecular modelling and simulation studies of the Mycobacterium tuberculosis multidrug efflux pump protein Rv1258c. PLoS ONE, 2018, 13, e0207605.	2.5	23
40	Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach. PLoS ONE, 2018, 13, e0204644.	2.5	23
41	Baobab Laboratory Information Management System: Development of an Open-Source Laboratory Information Management System for Biobanking. Biopreservation and Biobanking, 2017, 15, 116-120.	1.0	20
42	Expansion Mechanisms and Functional Annotations of Hypothetical Genes in the Rice Genome. Plant Physiology, 2009, 150, 1997-2008.	4.8	19
43	Genome-wide SNP identification by high-throughput sequencing and selective mapping allows sequence assembly positioning using a framework genetic linkage map. BMC Biology, 2010, 8, 155.	3.8	19
44	Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PLoS ONE, 2021, 16, e0245258.	2.5	19
45	Future-proofing and maximizing the utility of metadata: The PHA4GE SARS-CoV-2 contextual data specification package. GigaScience, 2022, 11, .	6.4	18
46	DDESC: Dragon database for exploration of sodium channels in human. BMC Genomics, 2008, 9, 622.	2.8	17
47	A comparative analysis of trypanosomatid SNARE proteins. Parasitology International, 2014, 63, 341-348.	1.3	17
48	Assessment of the parallelization approach ofd2_cluster for high-performance sequence clustering. Journal of Computational Chemistry, 2002, 23, 755-757.	3.3	15
49	Accessing Biospecimens from the H3Africa Consortium. Biopreservation and Biobanking, 2017, 15, 95-98.	1.0	15
50	Supporting the development of biobanks in low and medium income countries. , 2016, , .		14
51	Selecting a Laboratory Information Management System for Biorepositories in Low- and Middle-Income Countries: The H3Africa Experience and Lessons Learned. Biopreservation and Biobanking, 2017, 15, 111-115.	1.0	14
52	Dragon exploratory system on Hepatitis C Virus (DESHCV). Infection, Genetics and Evolution, 2011, 11, 734-739.	2.3	13
53	DESTAF: A database of text-mined associations for reproductive toxins potentially affecting human fertility. Reproductive Toxicology, 2012, 33, 99-105.	2.9	13
54	Structural and functional effects of nucleotide variation on the human TB drug metabolizing enzyme arylamine N -acetyltransferase 1. Journal of Molecular Graphics and Modelling, 2017, 75, 330-339.	2.4	13

#	Article	IF	CITATIONS
55	The Development of Computational Biology in South Africa: Successes Achieved and Lessons Learnt. PLoS Computational Biology, 2016, 12, e1004395.	3.2	12
56	Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing. Malaria Journal, 2016, 15, 542.	2.3	11
57	Cheminformatic Characterization of Natural Antimicrobial Products for the Development of New Lead Compounds. Molecules, 2021, 26, 3970.	3.8	11
58	New INN nomenclature for monoclonal antibodies. Lancet, The, 2022, 399, 24.	13.7	11
59	Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes. Biomolecules, 2021, 11, 541.	4.0	10
60	International nonproprietary names for monoclonal antibodies: an evolving nomenclature system. MAbs, 2022, 14, 2075078.	5.2	10
61	Tetraodon genome analysis provides further evidence for whole-genome duplication in the ray-finned fish lineage. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2006, 1, 13-19.	1.0	9
62	Human African Trypanosomiasis Research Gets a Boost: Unraveling the Tsetse Genome. PLoS Neglected Tropical Diseases, 2014, 8, e2624.	3.0	9
63	Chemosensory receptors in tsetse flies provide link between chemical and behavioural ecology. Trends in Parasitology, 2014, 30, 426-428.	3.3	9
64	Prioritization of candidate genes for a South African family with Parkinson's disease using in-silico tools. PLoS ONE, 2021, 16, e0249324.	2.5	9
65	COMBAT-TB-NeoDB: fostering tuberculosis research through integrative analysis using graph database technologies. Bioinformatics, 2020, 36, 982-983.	4.1	8
66	POPIA Code of Conduct for Research (with corrigendum). South African Journal of Science, 2021, 117, .	0.7	8
67	Cheminformatic Profiling and Hit Prioritization of Natural Products with Activities against Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules, 2021, 26, 3674.	3.8	8
68	Evolutionary genomics of Glossina morsitans immune-related CLIP domain serine proteases and serine protease inhibitors. Infection, Genetics and Evolution, 2011, 11, 740-745.	2.3	7
69	Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms. BMC Bioinformatics, 2015, 16, 58.	2.6	7
70	TSS seq based core promoter architecture in blood feeding Tsetse fly (Glossina morsitans morsitans) vector of Trypanosomiasis. BMC Genomics, 2015, 16, 722.	2.8	6
71	Evaluation of Protein Purification Techniques and Effects of Storage Duration on LC-MS/MS Analysis of Archived FFPE Human CRC Tissues. Pathology and Oncology Research, 2021, 27, 622855.	1.9	6
72	International Glossina Genome Initiative 2004–2014: A Driver for Post-Genomic Era Research on the African Continent. PLoS Neglected Tropical Diseases, 2014, 8, e3024.	3.0	5

#	Article	IF	CITATIONS
73	Exploration of Scaffolds from Natural Products with Antiplasmodial Activities, Currently Registered Antimalarial Drugs and Public Malarial Screen Data. Molecules, 2016, 21, 104.	3.8	5
74	Cellular and Molecular Targets of Waterbuck Repellent Blend Odors in Antennae of Glossina fuscipes fuscipes Newstead, 1910. Frontiers in Cellular Neuroscience, 2020, 14, 137.	3.7	5
75	Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins. Insects, 2014, 5, 885-908.	2.2	4
76	Structure based identification of novel inhibitors against ATP synthase of Mycobacterium tuberculosis: A combined in silico and in vitro study. International Journal of Biological Macromolecules, 2019, 135, 582-590.	7.5	4
77	Careful governance of African biobanks. Lancet, The, 2020, 395, 29-30.	13.7	4
78	The COMBAT-TB Workbench: Making Powerful Mycobacterium tuberculosis Bioinformatics Accessible. MSphere, 2022, 7, e0099121.	2.9	4
79	Information security at South African universities—implications for biomedical research. International Data Privacy Law, 2020, 10, 180-186.	1.2	3
80	In silico repurposing of a Novobiocin derivative for activity against latency associated Mycobacterium tuberculosis drug target nicotinate-nucleotide adenylyl transferase (Rv2421c). PLoS ONE, 2021, 16, e0259348.	2.5	3
81	Current Status of Next-Generation Sequencing Approaches for Candidate Gene Discovery in Familial ParkinsonÂ's Disease. Frontiers in Genetics, 2022, 13, 781816.	2.3	3
82	Computational characterization of Iron metabolism in the Tsetse disease vector, Glossina morsitans: IRE stem-loops. BMC Genomics, 2016, 17, 561.	2.8	2
83	Cheminformatics techniques in antimalarial drug discovery and development from natural products 1: basic concepts. Physical Sciences Reviews, 2019, 4, .	0.8	2
84	Using UniGene, STACK, and TIGR indices. , 2005, , .		1
85	Transcriptomic Profile of Mycobacterium smegmatis in Response to an Imidazo[1,2-b][1,2,4,5]tetrazine Reveals Its Possible Impact on Iron Metabolism. Frontiers in Microbiology, 2021, 12, 724042.	3.5	1
86	Global Expression Profiling in Zebrafish Reveals Genes with Potential Roles in Sexual Differentiation. Biology of Reproduction, 2008, 78, 116-116.	2.7	1
87	microRNA profile of Hermetia illucens (black soldier fly) and its implications on mass rearing. PLoS ONE, 2022, 17, e0265492.	2.5	1
88	The developmentally dynamic microRNA transcriptome of <i>Glossina pallidipes</i> tsetse flies, vectors of animal trypanosomiasis. Bioinformatics Advances, 2022, 2, .	2.4	1
89	Effect of polyethylene glycol 20 000 on protein extraction efficiency of formalin-fixed paraffin-embedded tissues in South Africa. African Journal of Laboratory Medicine, 2021, 10, 1122.	0.6	1
90	Cheminformatics techniques in antimalarial drug discovery and development from natural products 2: Molecular scaffold and machine learning approaches. ChemistrySelect, 2021, 6, .	1.5	0

#	Article	IF	CITATIONS
91	COMPARISON OF CORE PROMOTERS IN FUGU RUBRIPES AND HUMAN., 2005, , .		o
92	MOLECULAR PHYLOGENETIC ANALYSIS: UNDERSTANDING GENOME EVOLUTION. Series on Advances in Bioinformatics and Computational Biology, 2005, , 645-651.	0.2	0
93	Repurposing Based Identification of Novel Inhibitors against MmpS5-MmpL5 Efflux Pump of Mycobacterium smegmatis: A Combined In Silico and In Vitro Study. Biomedicines, 2022, 10, 333.	3.2	0
94	Software Tools for Biobanking in LMICs. , 2022, , 137-146.		0
95	Title is missing!. , 2021, 16, e0245258.		O
96	Title is missing!. , 2021, 16, e0245258.		0
97	Title is missing!. , 2021, 16, e0245258.		O
98	Title is missing!. , 2021, 16, e0245258.		0
99	Dealing with Duplicated Genomes of Teleosts. , 0, , 511-524.		O