
Oleksandr L Stroyuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/25958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 2018, 47, 5354-5422.	18.7	177
2	A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 9032-9042.	1.5	131
3	Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 126-134.	2.0	124
4	Optical and catalytic properties of Ag2S nanoparticles. Journal of Molecular Catalysis A, 2004, 221, 209-221.	4.8	117
5	Photochemical synthesis and optical properties of binary and ternary metal–semiconductor composites based on zinc oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 185-194.	2.0	97
6	Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS. Nanotechnology, 2007, 18, 285701.	1.3	89
7	Origin and Dynamics of Highly Efficient Broadband Photoluminescence of Aqueous Glutathione-Capped Size-Selected Ag–In–S Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 13648-13658.	1.5	88
8	Size effects on Raman spectra of small CdSe nanoparticles in polymer films. Nanotechnology, 2008, 19, 305707.	1.3	86
9	Nonresonant Surface-Enhanced Raman Scattering of ZnO Quantum Dots with Au and Ag Nanoparticles. ACS Nano, 2013, 7, 3420-3426.	7.3	74
10	Size-Dependent Optical Properties of Colloidal ZnO Nanoparticles Charged by Photoexcitation. Journal of Physical Chemistry C, 2010, 114, 220-225.	1.5	73
11	Quantum Size Effects in Semiconductor Photocatalysis. Theoretical and Experimental Chemistry, 2005, 41, 207-228.	0.2	64
12	Synthesis and Characterization of White-Emitting CdS Quantum Dots Stabilized with Polyethylenimine. Journal of Physical Chemistry C, 2010, 114, 22478-22486.	1.5	63
13	Preparation of colloidal CdSe and CdS/CdSe nanoparticles from sodium selenosulfate in aqueous polymers solutions. Journal of Colloid and Interface Science, 2006, 302, 133-141.	5.0	53
14	Inherently Broadband Photoluminescence in Ag–In–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies. Journal of Physical Chemistry C, 2019, 123, 2632-2641.	1.5	53
15	Spectral and luminescent properties of ZnO–SiO ₂ core–shell nanoparticles with size-selected ZnO cores. RSC Advances, 2014, 4, 63393-63401.	1.7	52
16	Photocatalytic growth of CdS, PbS, and CuxS nanoparticles on the nanocrystalline TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 137-144.	2.0	51
17	The influence of shell parameters on phonons in core–shell nanoparticles: a resonant Raman study. Nanotechnology, 2009, 20, 365704.	1.3	51
18	Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots. RSC Advances, 2018, 8, 7550-7557.	1.7	51

#	Article	IF	CITATIONS
19	Raman and Infrared Phonon Spectra of Ultrasmall Colloidal CdS Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 19492-19497.	1.5	50
20	Non-stoichiometric Cu–In–S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells. RSC Advances, 2016, 6, 100145-100157.	1.7	48
21	Photochemical synthesis of ZnO/Ag nanocomposites. Journal of Nanoparticle Research, 2007, 9, 427-440.	0.8	46
22	Quantum Size Effects in the Photonics of Semiconductor Nanoparticles. Theoretical and Experimental Chemistry, 2005, 41, 67-91.	0.2	45
23	Zinc sulfide nanoparticles: Spectral properties and photocatalytic activity in metals reduction reactions. Journal of Nanoparticle Research, 2007, 9, 1027-1039.	0.8	44
24	"Green―Aqueous Synthesis and Advanced Spectral Characterization of Size-Selected Cu2ZnSnS4 Nanocrystal Inks. Scientific Reports, 2018, 8, 13677.	1.6	39
25	Annealing-induced structural transformation of gelatin-capped Se nanoparticles. Solid State Communications, 2008, 145, 288-292.	0.9	37
26	Origin of the Broadband Photoluminescence of Pristine and Cu ⁺ /Ag ⁺ -Doped Ultrasmall CdS and CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 10267-10277.	1.5	37
27	Raman characterization of Cu ₂ ZnSnS ₄ nanocrystals: phonon confinement effect and formation of Cu _x S phases. RSC Advances, 2018, 8, 30736-30746.	1.7	37
28	Influence of colloidal graphene oxide on photocatalytic activity of nanocrystalline TiO2 in gas-phase ethanol and benzene oxidation. Applied Catalysis B: Environmental, 2014, 148-149, 543-549.	10.8	35
29	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	1.7	35
30	A dynamic light scattering study of photochemically reduced colloidal graphene oxide. Colloid and Polymer Science, 2014, 292, 539-546.	1.0	34
31	Semiconductor photocatalytic systems for the production of hydrogen by the action of visible light. Theoretical and Experimental Chemistry, 2009, 45, 209-233.	0.2	33
32	Enhanced Raman scattering of ZnO nanocrystals in the vicinity of gold and silver nanostructured surfaces. Optics Express, 2016, 24, A168.	1.7	32
33	Photochemical reduction of graphene oxide in colloidal solution. Theoretical and Experimental Chemistry, 2012, 48, 2-13.	0.2	31
34	Structural and optical characterization of colloidal Se nanoparticles prepared via the acidic decomposition of sodium selenosulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320, 169-174.	2.3	28
35	Photochemical formation and photoelectrochemical properties of TiO2/Sb2S3 heterostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 303-304, 8-16.	2.0	28
36	Luminescent Ag-doped In2S3 nanoparticles stabilized by mercaptoacetate in water and glycerol. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	28

OLEKSANDR L STROYUK

#	Article	IF	CITATIONS
37	Photoinitiation of acrylamide polymerization by Fe2O3 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192, 98-104.	2.0	27
38	Photocatalytic Oxidation of Hydrosulfide Ions by Molecular Oxygen Over Cadmium Sulfide Nanoparticles. Journal of Nanoparticle Research, 2004, 6, 149-158.	0.8	25
39	Electron energy factors in photocatalytic methylviologen reduction in the presence of semiconductor nanocrystals. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 209-214.	2.0	25
40	Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu ₂ ZnSnS ₄ Photovoltaic Absorbers. ACS Applied Nano Materials, 2020, 3, 5706-5717.	2.4	25
41	Preparation and optical properties of highly luminescent colloidal single-layer carbon nitride. RSC Advances, 2015, 5, 46843-46849.	1.7	24
42	A spectroscopic and photochemical study of Ag+-, Cu2+-, Hg2+-, and Bi3+-doped Cd Zn1â^'S nanoparticles. Journal of Colloid and Interface Science, 2010, 345, 515-523.	5.0	23
43	Enhancement of the photoluminescence in CdSe quantum dot–polyvinyl alcohol composite by light irradiation. Applied Surface Science, 2013, 281, 118-122.	3.1	23
44	Photopolymerization of acrylamide induced by colloidal graphene oxide. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 256, 1-6.	2.0	23
45	Lead-free hybrid perovskites for photovoltaics. Beilstein Journal of Nanotechnology, 2018, 9, 2209-2235.	1.5	23
46	Synthesis and luminescent properties of ultrasmall colloidal CdS nanoparticles stabilized by Cd(II) complexes with ammonia and mercaptoacetate. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	22
47	A new route to very stable water-soluble ultra-small core/shell CdSe/CdS quantum dots. Nano Structures Nano Objects, 2018, 13, 146-154.	1.9	22
48	Spectral and Luminescent Characteristics of Products from Exfoliation of Graphitic Carbon Nitride Produced at Various Temperatures. Theoretical and Experimental Chemistry, 2015, 51, 243-251.	0.2	21
49	Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings. Applied Surface Science, 2011, 257, 3331-3335.	3.1	20
50	Photocatalytic Selective Oxidation of Organic Compounds in Graphitic Carbon Nitride Systems: A Review. Theoretical and Experimental Chemistry, 2019, 55, 147-172.	0.2	20
51	One-step photostructuring of multiple hydrogel arrays for compartmentalized enzyme reactions in microfluidic devices. Reaction Chemistry and Engineering, 2019, 4, 2141-2155.	1.9	20
52	Nanocrystalline TiO2/Au films: Photocatalytic deposition of gold nanocrystals and plasmonic enhancement of Raman scattering from titania. Materials Science in Semiconductor Processing, 2015, 37, 3-8.	1.9	19
53	Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method. Thin Solid Films, 2015, 589, 145-152.	0.8	19
54	Photochemical Synthesis, Spectral-Optical and Electrophysical Properties of Composite Nanoparticles of ZnO/Ag. Theoretical and Experimental Chemistry, 2004, 40, 98-104.	0.2	18

#	Article	IF	CITATIONS
55	Morphology, optical, and photoelectrochemical properties of electrodeposited nanocrystalline ZnO films sensitized with Cd x Zn1â^'x S nanoparticles. Journal of Materials Science, 2013, 48, 7764-7773.	1.7	18
56	Optical characterization of the AgInS2 nanocrystals synthesized in aqueous media under stoichiometric conditions. Materials Science in Semiconductor Processing, 2015, 37, 135-142.	1.9	18
57	Photocatalytic Hydrogen Evolution Under Visible Light Illumination in Systems Based on Graphitic Carbon Nitride. Theoretical and Experimental Chemistry, 2018, 54, 1-35.	0.2	18
58	Nanosecond and microsecond decay of photogenerated charges in CdxZn1â^'x S nanoparticles. Theoretical and Experimental Chemistry, 2007, 43, 297-305.	0.2	17
59	Photochemical formation of semiconducting nanostructures. Theoretical and Experimental Chemistry, 2008, 44, 205-231.	0.2	17
60	Photocatalytic H 2 production from aqueous solutions of hydrazine and its derivatives in the presence of nitric-acid-activated graphitic carbon nitride. Catalysis Today, 2017, 284, 229-235.	2.2	17
61	Insights into different photoluminescence mechanisms of binary and ternary aqueous nanocrystals from the temperature dependence: A case study of CdSe and Ag-In-S. Journal of Luminescence, 2019, 215, 116630.	1.5	17
62	Temperatureâ€Dependent Photoluminescence of Silverâ€Indiumâ€Sulfide Nanocrystals in Aqueous Colloidal Solutions. ChemPhysChem, 2019, 20, 1640-1648.	1.0	17
63	Phonon Spectra of Strongly Luminescent Nonstoichiometric Ag–In–S, Cu–In–S, and Hg–In–S Nanocrystals of Small Size. Journal of Physical Chemistry C, 2020, 124, 15511-15522.	1.5	17
64	Photocatalytic formation of porous CdS/ZnO nanospheres and CdS nanotubes. Theoretical and Experimental Chemistry, 2007, 43, 229-234.	0.2	16
65	Characterization of semiconductor core–shell nanoparticles by resonant Raman scattering and photoluminescence spectroscopy. Applied Surface Science, 2008, 255, 725-727.	3.1	16
66	Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties. RSC Advances, 2020, 10, 42178-42193.	1.7	16
67	Role of quantum-sized effects on the cathodic photocorrosion of ZnO nanoparticles in ethanol. Theoretical and Experimental Chemistry, 2004, 40, 378-382.	0.2	15
68	Photocatalytic properties of rutile nanoparticles obtained via low temperature route from titanate nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 218, 231-238.	2.0	15
69	Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. Journal of Chemical Physics, 2019, 151, 144701.	1.2	15
70	Composition-Dependent Optical Band Bowing, Vibrational, and Photochemical Behavior of Aqueous Glutathione-Capped (Cu, Ag)–In–S Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 19375-19388.	1.5	15
71	Title is missing!. Theoretical and Experimental Chemistry, 2003, 39, 158-165.	0.2	14
72	Spectral, Optical, and Photocatalytic Characteristics of Quantum-Sized Particles of CdTe. Theoretical and Experimental Chemistry, 2004, 40, 220-225.	0.2	14

#	Article	IF	CITATIONS
73	Photopolymerization of water-soluble acrylic monomers induced by colloidal CdS and Cd x Zn1 â^ x S nanoparticles. Colloid and Polymer Science, 2008, 286, 489-498.	1.0	14
74	Inorganic photoelectrochemical solar cells based on nanocrystalline ZnO/ZnSe and ZnO/CuSe heterostructures. Catalysis Today, 2014, 230, 227-233.	2.2	14
75	Brightly luminescent colloidal Ag–In–S nanoparticles stabilized in aqueous solutions by branched polyethyleneimine. Journal of Luminescence, 2016, 178, 295-300.	1.5	14
76	Nondestructive characterization of polymeric components of silicon solar modules by near-infrared absorption spectroscopy (NIRA). Solar Energy Materials and Solar Cells, 2020, 216, 110702.	3.0	14
77	High-Throughput Time-Resolved Photoluminescence Study of Composition- and Size-Selected Aqueous Ag–In–S Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 12185-12197.	1.5	13
78	PV modules and their backsheets - A case study of a Multi-MW PV power station. Solar Energy Materials and Solar Cells, 2021, 231, 111295.	3.0	13
79	"Green―synthesis of highly luminescent lead-free Cs ₂ Ag _{<i>x</i>} Na _{1â^'<i>x</i>} Na _{1â^'<i>x</i>} Bi _{<i>y</i>} In _{1â^'<i>y</i>} Bi _{<i>y</i>}	ub>Cl<	su b3 6
80	Photocatalytic production of hydrogen from water–alcohol media with the participation of mesoporous TiO2. Theoretical and Experimental Chemistry, 2009, 45, 343-348.	0.2	12
81	Gelatin-templated mesoporous titania for photocatalytic air treatment and application in metal chalcogenide nanoparticle-sensitized solar cells. Photochemical and Photobiological Sciences, 2013, 12, 621-625.	1.6	12
82	Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method. Thin Solid Films, 2014, 562, 56-62.	0.8	12
83	Raman study of flash-lamp annealed aqueous Cu ₂ ZnSnS ₄ nanocrystals. Beilstein Journal of Nanotechnology, 2019, 10, 222-227.	1.5	12
84	Highâ€Throughput Robotic Synthesis and Photoluminescence Characterization of Aqueous Multinary Copper–Silver Indium Chalcogenide Quantum Dots. Particle and Particle Systems Characterization, 2021, 38, 2100169.	1.2	12
85	Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin. Journal of Physics Condensed Matter, 2008, 20, 455203.	0.7	11
86	The effect of bio-conjugation on aging of the photoluminescence in CdSeTe–ZnS core–shell quantum dots. Superlattices and Microstructures, 2012, 51, 353-362.	1.4	11
87	Wet leakage resistance development of modules with various backsheet types. Progress in Photovoltaics: Research and Applications, 2022, 30, 938-947.	4.4	11
88	Photocatalysis of the Reduction of Cd2+Ions by CdS Nanoparticles in Isopropyl Alcohol. Theoretical and Experimental Chemistry, 2003, 39, 341-346.	0.2	10
89	Photocatalytic production of hydrogen in systems based on Cd x Zn1–x S/NiO nanostructures. Theoretical and Experimental Chemistry, 2009, 45, 12-22.	0.2	10
90	Photoassisted formation of CuxS-based cathodes for CdS-sensitized solar cells with S2â^'/Sx2â^' electrolyte. Photochemical and Photobiological Sciences, 2015, 14, 942-947.	1.6	10

#	Article	IF	CITATIONS
91	Photocatalytic and photoelectrochemical properties of hierarchical mesoporous TiO2 microspheres produced using a crown template. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 334, 26-35.	2.0	10
92	Solar Light Harvesting with Nanocrystalline Semiconductors. Lecture Notes in Quantum Chemistry II, 2018, , .	0.3	10
93	Photoinduced Electron Transfer between CdS and CdTe Nanoparticles in Colloidal Solutions. Theoretical and Experimental Chemistry, 2004, 40, 287-292.	0.2	9
94	Effect of the Method of Preparation of ZnO/CdS and TiO2/CdS Film Nanoheterostructures on Their Photoelectrochemical Properties. Theoretical and Experimental Chemistry, 2013, 49, 165-171.	0.2	9
95	Structure, optical properties and visible-light-induced photochemical activity of nanocrystalline ZnO films deposited by atomic layer deposition onto Si(100). Thin Solid Films, 2014, 573, 128-133.	0.8	9
96	Photochemical Processes Involving Graphene Oxide. Theoretical and Experimental Chemistry, 2015, 51, 1-29.	0.2	9
97	Photoelectrochemical Characteristics of Solar Cell Based on FTO/ZnO/CdS (Photoanode) and FTO/ZnO/Cu x S (Counter Electrode) Heterostructures Formed by Photocatalytic Methods. Theoretical and Experimental Chemistry, 2015, 51, 203-209.	0.2	9
98	Light-emitting structures of CdS nanocrystals in oxidized macroporous silicon. Applied Surface Science, 2016, 388, 288-293.	3.1	9
99	Raman and X-ray Photoelectron Spectroscopic Study of Aqueous Thiol-Capped Ag-Zn-Sn-S Nanocrystals. Materials, 2021, 14, 3593.	1.3	9
100	Photocatalytic Synthesis of Composite CdSe/CdS Nanoparticles. Theoretical and Experimental Chemistry, 2005, 41, 181-186.	0.2	8
101	Preparation and spectral properties of high-efficiency luminescent polyethylenimine-stabilized CdS quantum dots. Theoretical and Experimental Chemistry, 2010, 46, 233-238.	0.2	8
102	Dynamics of the radiative recombination of charge carriers in CdS nanoparticles stabilized with polyethyleneimine. Theoretical and Experimental Chemistry, 2010, 46, 273-278.	0.2	8
103	Preparation and optical properties of polyethyleneimine-stabilized colloidal CdSe and CdS x Se1–x quantum dots. Theoretical and Experimental Chemistry, 2011, 46, 416-421.	0.2	8
104	Graphene Oxide Composites with Silver Nanoparticles: Photochemical Formation and Electrocatalytic Activity in the Oxidation of Methanol and Formaldehyde. Theoretical and Experimental Chemistry, 2014, 50, 155-161.	0.2	8
105	Morphology, optical and catalytic properties of polyethyleneimine-stabilized Au nanoparticles. Journal of Molecular Catalysis A, 2015, 398, 35-41.	4.8	8
106	Graded ZnS/ZnSxO1â^'x heterostructures produced by oxidative photolysis of zinc sulfide: Structure, optical properties and photocatalytic evolution of molecular hydrogen. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 213-220.	2.0	8
107	Active Plasmonic Colloid-to-Film-Coupled Cavities for Tailored Light–Matter Interactions. Journal of Physical Chemistry C, 2019, 123, 6745-6752.	1.5	8
108	Distinguishing between different types of multiâ€layered PETâ€based backsheets of PV modules with nearâ€infrared spectroscopy. Progress in Photovoltaics: Research and Applications, 2022, 30, 859-868.	4.4	8

#	Article	IF	CITATIONS
109	Quantum-sized effects and the nature of the primary photoprocesses in copper(I) and copper(II) sulfide nanoparticles. Theoretical and Experimental Chemistry, 1999, 35, 89-94.	0.2	7
110	Photocatalysis of the Release of Molecular Hydrogen from Aqueous Solutions of Sodium Sulfite by Composite CdS/Ni Nanoparticles. Theoretical and Experimental Chemistry, 2004, 40, 1-6.	0.2	7
111	Tuning the surface plasmon resonance in gold nanocrystals with single layer carbon nitride. RSC Advances, 2019, 9, 444-449.	1.7	7
112	Photochemical Synthesis and Spectral-Optical Characteristics of ZnO/Cu and ZnO/Ag/Cu Nanoheterostructures. Theoretical and Experimental Chemistry, 2004, 40, 149-153.	0.2	6
113	Structural and optical characteristics of CdxZn1â°'x S nanoparticles stabilized in aqueous solutions of polymers. Theoretical and Experimental Chemistry, 2006, 42, 181-185.	0.2	6
114	Effect of the method of production of TiO2/CdS nanohetero film structures on the effectiveness of photoinduced charge separation. Theoretical and Experimental Chemistry, 2009, 45, 302-307.	0.2	6
115	Morphology, photochemical and photocatalytic properties of nanocrystalline zinc oxide films. Theoretical and Experimental Chemistry, 2012, 48, 331-337.	0.2	6
116	Photocatalytic and Photoelectrochemical Characteristics of Mesoporous Titanium Dioxide Microspheres. Theoretical and Experimental Chemistry, 2015, 51, 183-190.	0.2	6
117	Semiconductor Photocatalytic Systems for the Reductive Conversion of CO2 and N2. Theoretical and Experimental Chemistry, 2018, 53, 359-386.	0.2	6
118	CdS Nanoparticle Photocatalysis of the Chain Oxidation of Sulfite Ions by Molecular Oxygen. Theoretical and Experimental Chemistry, 2003, 39, 235-241.	0.2	5
119	Synthesis and Photophysical Properties of CuS Nanoparticles Stabilized by Sodium Polyphosphate. Theoretical and Experimental Chemistry, 2003, 39, 303-308.	0.2	5
120	Photocatalytic activity of a mesoporous TiO2/Ni composite in the generation of hydrogen from aqueous ethanol systems. Theoretical and Experimental Chemistry, 2005, 41, 26-31.	0.2	5
121	Photochemical reduction of sulfur in the presence of ZnO nanoparticles in ethanol. Theoretical and Experimental Chemistry, 2010, 46, 218-224.	0.2	5
122	Modification by thermal annealing of the luminescent characteristics of CdSe quantum dots in gelatin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1779-1782.	0.8	5
123	Nanoparticles of Ag-In-S and Cu-In-S in Aqueous Media: Preparation, Spectral and Luminescent Properties. Theoretical and Experimental Chemistry, 2017, 53, 338-348.	0.2	5
124	Single-layer carbon nitride: synthesis, structure, photophysical/photochemical properties, and applications. Physical Chemistry Chemical Physics, 2021, 23, 20745-20764.	1.3	5
125	Spontaneous alloying of ultrasmall non-stoichiometric Ag–In–S and Cu–In–S quantum dots in aqueous colloidal solutions. RSC Advances, 2021, 11, 21145-21152.	1.7	5
126	Photoinduced Enhancement of Photoluminescence of Colloidal II-VI Nanocrystals in Polymer Matrices. Nanomaterials, 2020, 10, 2565.	1.9	5

#	Article	IF	CITATIONS
127	Spectro-Optical and Photochemical Properties of ZnS Nanoparticles. Theoretical and Experimental Chemistry, 2005, 41, 111-116.	0.2	4
128	Optical Absorption Processes in CdSe Nanocrystals Embedded in Silicate Glass and Organic Polymer Matrices Under 7-MeV Electron Irradiation. Journal of Nanoscience and Nanotechnology, 2008, 8, 806-811.	0.9	4
129	Structured Films of Cu x S – Counter Electrodes for Solar Cells Based on FTO/ZnO/CdS Heterostructures and Sulfide/Polysulfide Redox Couple. Theoretical and Experimental Chemistry, 2013, 49, 213-218.	0.2	4
130	Quenching of photoluminescence of colloidal ZnO nanocrystals by nitronyl nitroxide radicals. Physica B: Condensed Matter, 2014, 453, 127-130.	1.3	4
131	The Photoluminescence Properties of CuInS2 and AgInS2 Nanocrystals Synthesized in Aqueous Solutions. ECS Transactions, 2015, 66, 171-179.	0.3	4
132	Influence of Thermal and Photochemical Treatments on Structure and Optical Properties of Single‣ayer Carbon Nitride. Physica Status Solidi (B): Basic Research, 2019, 256, 1800279.	0.7	4
133	Room-Temperature Electron Paramagnetic Resonance Study of a Copper-Related Defect in Cu ₂ ZnSnS ₄ Colloidal Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 9923-9929.	1.5	4
134	Oxidation of Polysulfide Ions Induced by CdS Nanoparticles under Pulsed Photolysis Conditions. Theoretical and Experimental Chemistry, 2004, 40, 130-135.	0.2	3
135	Photoinduced variations in the size of nanoparticles of CdS in colloidal solutions. Theoretical and Experimental Chemistry, 2007, 43, 184-190.	0.2	3
136	Photocatalytic Reduction of Zn(II) with Participation of ZnS Nanoparticles. Theoretical and Experimental Chemistry, 2005, 41, 241-246.	0.2	2
137	Photocatalysis by ZnS nanoparticles of the formation of ZnS/Au heterostructure in the reduction of complex ions of gold. Theoretical and Experimental Chemistry, 2005, 41, 359-364.	0.2	2
138	Features of formation of CdSe nanoparticles in aqueous sodium polyphosphate solutions. Theoretical and Experimental Chemistry, 2006, 42, 113-118.	0.2	2
139	Effect of temperature on the optical properties of polyethylenimine-stabilized CdS nanoparticles. Theoretical and Experimental Chemistry, 2012, 48, 106-112.	0.2	2
140	Nanoparticles of Graphitic Carbon Nitride: Stabilization in Aqueous Solutions, Spectral and Luminescent Properties. Theoretical and Experimental Chemistry, 2014, 50, 291-298.	0.2	2
141	Photoluminescence and structural properties of CdSe quantum dot–gelatin composite films. Physica B: Condensed Matter, 2014, 453, 86-91.	1.3	2
142	Photoelectrochemical Properties of Titanium Dioxide Nanoheterostructures with Low-Dimensional Cadmium Selenide Particles. Theoretical and Experimental Chemistry, 2016, 52, 152-162.	0.2	2
143	Identification of solar module behavior originating from backsheet failure - from lab studies to field tests. , 2021, , .		2
144	Impact of the module backsheet components on the electrical field performance of PV-plants. , 2020, , .		2

#	Article	IF	CITATIONS
145	Unique Luminescent Properties of Composition-/Size-Selected Aqueous Ag-In-S and Core/Shell Ag-In-S/ZnS Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2020, , 67-122.	0.4	2
146	Copper-Content Dependent Structural and Electrical Properties of CZTS Films Formed by "Green― Colloidal Nanocrystals. Electronic Materials, 2022, 3, 136-153.	0.9	2
147	The effect of PbS nanoparticles on the formation of PbSe in aqueous solutions of sodium selenosulfate and lead(II). Theoretical and Experimental Chemistry, 2006, 42, 346-351.	0.2	1
148	Structure and spectral-optical characteristics of Se, Se/CdS, and Se/Cd0.5Zn0.5S nanoparticles, stabilized in polymer-containing media. Theoretical and Experimental Chemistry, 2007, 43, 28-34.	0.2	1
149	Optical and electroluminescent characteristics of CdS nanoparticles stabilized by guanidine-containing dendrimers. Theoretical and Experimental Chemistry, 2012, 47, 361-366.	0.2	1
150	Size-dependent photoinduced interactions between ZnO nanocrystals and a nitronyl nitroxide radical Nit(o-OH)Ph. Photochemical and Photobiological Sciences, 2013, 12, 356-362.	1.6	1
151	Colloidal indium sulfide quantum dots in water: synthesis and optical properties. Materials Research Society Symposia Proceedings, 2013, 1617, 163-169.	0.1	1
152	Effect of the Degree of Photoreduction of Graphene Oxide on its Ability to Stabilize Graphite and Carbon Nanotubes in Aqueous Colloidal Solutions. Theoretical and Experimental Chemistry, 2014, 50, 282-290.	0.2	1
153	Effect of Post-Synthesis Heat Treatment of ZnO Nanoparticles in DMF on Their Size and Spectral and Luminescent Properties. Theoretical and Experimental Chemistry, 2016, 51, 358-365.	0.2	1
154	Photoelectrochemical Properties of Nanoheterostructures Based on Titanium Dioxide and Ag-In-S Quantum Dots Produced by Size-Selective Precipitation. Theoretical and Experimental Chemistry, 2017, 53, 251-258.	0.2	1
155	Semiconductor-Based Photocatalytic Systems for the Reductive Conversion of CO2 and N2. Lecture Notes in Quantum Chemistry II, 2018, , 127-160.	0.3	1
156	Basic Concepts of the Photochemistry of Semiconductor Nanoparticles. Lecture Notes in Quantum Chemistry II, 2018, , 1-37.	0.3	1
157	Semiconductor-Based Photocatalytic Systems for the Solar-Light-Driven Water Splitting and Hydrogen Evolution. Lecture Notes in Quantum Chemistry II, 2018, , 39-125.	0.3	1
158	Solarâ€NIRT: Identification of PVâ€module backsheets in the field with natural sunlight. Progress in Photovoltaics: Research and Applications, 2022, 30, 851-858.	4.4	1
159	Photocatalytic synthesis of ZnO/Ag nanostructure sensitized by methylene blue. Theoretical and Experimental Chemistry, 2005, 41, 13-18.	0.2	0
160	Spectral and photochemical characteristics of CdSe nanoparticles stabilized in polymer-containing media. Theoretical and Experimental Chemistry, 2006, 42, 162-168.	0.2	0
161	A new mild synthesis and optical properties of colloidal ZnO nanocrystals in dimethylformamide/ethanol solutions. Materials Research Society Symposia Proceedings, 2013, 1617, 119-124.	0.1	0
162	Size Control of Cadmium Sulfide Nanoparticles in Polyvinyl Alcohol and Gelatin by Polyethyleneimine Addition. Materials Research Society Symposia Proceedings, 2013, 1534, A139-A144.	0.1	0

OLEKSANDR L STROYUK

#	Article	IF	CITATIONS
163	Photoinduced Photoluminescence Enhancement in CdSe Quantum Dot – Polyvinyl Alcohol Composites. Materials Research Society Symposia Proceedings, 2013, 1534, A145-A150.	0.1	Ο
164	Photoluminescence and Structural Properties of CdSe Quantum Dot-Polymer Composite Films. Materials Research Society Symposia Proceedings, 2013, 1617, 171-177.	0.1	0
165	NON-RESONANT ENHANCED RAMAN SCATTERING OF LIGHT BY ZnO NANOCRYSTALS NEAR SILVER AND GOLD COLLOIDAL NANOPARTICLES. , 2013, , .		Ο
166	Semiconductor-Based Liquid-Junction Photoelectrochemical Solar Cells. Lecture Notes in Quantum Chemistry II, 2018, , 161-240.	0.3	0
167	Synthesis of Nanocrystalline Photo-Active Semiconductors. Lecture Notes in Quantum Chemistry II, 2018, , 241-318.	0.3	0
168	Probing with Light—Optical Methods in Studies of Nanocrystalline Semiconductors. Lecture Notes in Quantum Chemistry II, 2018, , 319-371.	0.3	0
169	Photocatalytic Formation of Composite Electrodes for Semiconductor-Sensitized Solar Cells. , 2018, , 425-458.		0
170	Influence of local electric fields on the photoluminescence of CdS nanocrystals on the oxidized macroporous silicon surface. Himia, Fizika Ta Tehnologia Poverhni, 2015, 6, 489-497.	0.2	0