
Anthony W D Larkum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2595744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-resolved metagenomics provides insights into the functional complexity of microbial mats in Blue Holes, Shark Bay. FEMS Microbiology Ecology, 2022, 98, .	1.3	10
2	A Cyanobacteria Enriched Layer of Shark Bay Stromatolites Reveals a New Acaryochloris Strain Living in Near Infrared Light. Microorganisms, 2022, 10, 1035.	1.6	1
3	Time-resolved comparative molecular evolution of oxygenic photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148400.	0.5	44
4	Global distribution of a chlorophyll <i>f</i> cyanobacterial marker. ISME Journal, 2020, 14, 2275-2287.	4.4	41
5	Leaf growth in early development is key to biomass heterosis in Arabidopsis. Journal of Experimental Botany, 2020, 71, 2439-2450.	2.4	27
6	Water-oxidizing complex in Photosystem II: Its structure and relation to manganese-oxide based catalysts. Coordination Chemistry Reviews, 2020, 409, 213183.	9.5	61
7	Recent Advances in the Photosynthesis of Cyanobacteria and Eukaryotic Algae. Advances in Photosynthesis and Respiration, 2020, , 3-9.	1.0	1
8	Light-Harvesting in Cyanobacteria and Eukaryotic Algae: An Overview. Advances in Photosynthesis and Respiration, 2020, , 207-260.	1.0	4
9	Optical Properties of Corals Distort Variable Chlorophyll Fluorescence Measurements. Plant Physiology, 2019, 179, 1608-1619.	2.3	24
10	Effect of reduced irradiance on 13C uptake, gene expression and protein activity of the seagrass Zostera muelleri. Marine Environmental Research, 2019, 149, 80-89.	1.1	2
11	Editorial: Optics and Ecophysiology of Coral Reef Organisms. Frontiers in Marine Science, 2019, 6, .	1.2	2
12	Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia. FEMS Microbiology Ecology, 2019, 95, .	1.3	18
13	Early Archean origin of Photosystem <scp>II</scp> . Geobiology, 2019, 17, 127-150.	1.1	95
14	SeagrassDB: An open-source transcriptomics landscape for phylogenetically profiled seagrasses and aquatic plants. Scientific Reports, 2018, 8, 2749.	1.6	12
15	<i>In situ</i> metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria <i>Prochloron</i> and <i>Acaryochloris marina</i> . ISME Journal, 2018, 12, 556-567.	4.4	7
16	Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri. Photosynthesis Research, 2018, 136, 147-160.	1.6	31
17	Photosynthesis and Metabolism of Seagrasses. , 2018, , 315-342.		13
18	Lack of Methylated Hopanoids Renders the Cyanobacterium Nostoc punctiforme Sensitive to Osmotic and pH Stress. Applied and Environmental Microbiology, 2017, 83, .	1.4	13

#	Article	IF	CITATIONS
19	Carbon-concentrating mechanisms in seagrasses. Journal of Experimental Botany, 2017, 68, 3773-3784.	2.4	48
20	The â€~other' coral symbiont: <i>Ostreobium</i> diversity and distribution. ISME Journal, 2017, 11, 296-299.	4.4	72
21	Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 156-174.	0.5	40
22	Non-intrusive Assessment of Photosystem II and Photosystem I in Whole Coral Tissues. Frontiers in Marine Science, 2017, 4, .	1.2	19
23	In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop?. Frontiers in Microbiology, 2017, 8, 59.	1.5	64
24	Photosynthetic Acclimation of Symbiodinium in hospite Depends on Vertical Position in the Tissue of the Scleractinian Coral Montastrea curta. Frontiers in Microbiology, 2016, 7, 230.	1.5	43
25	<i>Symbiodinium</i> sp. cells produce lightâ€induced intra―and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytologist, 2016, 212, 472-484.	3.5	37
26	The Genome of a Southern Hemisphere Seagrass Species (<i>Zostera muelleri</i>). Plant Physiology, 2016, 172, 272-283.	2.3	88
27	The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Functional and Integrative Genomics, 2016, 16, 465-480.	1.4	41
28	Under high light stress two Indo-Pacific coral species display differential photodamage and photorepair dynamics. Marine Biology, 2016, 163, 1.	0.7	7
29	Photosynthesis and Light Harvesting in Algae. , 2016, , 67-87.		16
30	"Super-quenching―state protects Symbiodinium from thermal stress — Implications for coral bleaching. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 840-847.	0.5	63
31	Genomic and proteomic characterization of two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium <scp><i>A</i></scp> <i>caryochloris marina</i> . Environmental Microbiology, 2015, 17, 4239-4252.	1.8	25
32	Microenvironment and phylogenetic diversity of <scp><i>P</i></scp> <i>rochloron</i> inhabiting the surface of crustose didemnid ascidians. Environmental Microbiology, 2015, 17, 4121-4132.	1.8	5
33	Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae. ChemSusChem, 2015, 8, 2727-2736.	3.6	17
34	Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. Journal of Experimental Botany, 2015, 66, 1489-1498.	2.4	46
35	Chlorophyll <i>f</i> -driven photosynthesis in a cavernous cyanobacterium. ISME Journal, 2015, 9, 2108-2111.	4.4	56
36	The biological water-oxidizing complex at the nano–bio interface. Trends in Plant Science, 2015, 20, 559-568.	4.3	46

#	Article	IF	CITATIONS
37	The Effect of Diel Temperature and Light Cycles on the Growth of Nannochloropsis oculata in a Photobioreactor Matrix. PLoS ONE, 2014, 9, e86047.	1.1	36
38	Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis. Plant Physiology and Biochemistry, 2014, 83, 159-167.	2.8	37
39	Lateral light transfer ensures efficient resource distribution in symbiont-bearing corals. Journal of Experimental Biology, 2014, 217, 489-498.	0.8	88
40	Inhibition of photosynthetic CO2 fixation in the coral <i>Pocillopora damicornis</i> and its relationship to thermal bleaching. Journal of Experimental Biology, 2014, 217, 2150-62.	0.8	42
41	Rapid TaqMan-Based Quantification of Chlorophyll <i>d</i> -Containing Cyanobacteria in the Genus Acaryochloris. Applied and Environmental Microbiology, 2014, 80, 3244-3249.	1.4	9
42	Action spectra of oxygen production and chlorophyll a fluorescence in the green microalga Nannochloropsis oculata. Bioresource Technology, 2014, 169, 320-327.	4.8	29
43	Photosynthetic acclimation of Nannochloropsis oculata investigated by multi-wavelength chlorophyll fluorescence analysis. Bioresource Technology, 2014, 167, 521-529.	4.8	28
44	The in situ light microenvironment of corals. Limnology and Oceanography, 2014, 59, 917-926.	1.6	70
45	Light Respiratory Processes and Gross Photosynthesis in Two Scleractinian Corals. PLoS ONE, 2014, 9, e110814.	1.1	31
46	Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western Australia. Environmental Microbiology, 2013, 15, 1464-1475.	1.8	21
47	Formyl group modification of chlorophyll <i>a</i> : a major evolutionary mechanism in oxygenic photosynthesis. Plant, Cell and Environment, 2013, 36, 521-527.	2.8	31
48	Ecological roles of zoosporic parasites in blue carbon ecosystems. Fungal Ecology, 2013, 6, 319-327.	0.7	7
49	Reactive oxygen production induced by near-infrared radiation in three strains of the Chl d-containing cyanobacterium Acaryochloris marina. F1000Research, 2013, 2, 44.	0.8	5
50	Reactive oxygen production induced by near-infrared radiation in three strains of the Chl d-containing cyanobacterium Acaryochloris marina. F1000Research, 2013, 2, 44.	0.8	10
51	The Golden Apples of the Sun: the History of Photosynthesis—so Far. Advanced Topics in Science and Technology in China, 2013, , 834-839.	0.0	0
52	Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian <i>Lissoclinum patella</i> . ISME Journal, 2012, 6, 1222-1237.	4.4	82
53	Light transmission of the marine diatom Coscinodiscus wailesii. , 2012, , .		11
54	Biofilm Growth and Near-Infrared Radiation-Driven Photosynthesis of the Chlorophyll <i>d</i> -Containing Cyanobacterium Acaryochloris marina. Applied and Environmental Microbiology, 2012, 78, 3896-3904.	1.4	24

#	Article	IF	CITATIONS
55	Microenvironmental Ecology of the Chlorophyll b-Containing Symbiotic Cyanobacterium Prochloron in the Didemnid Ascidian Lissoclinum patella. Frontiers in Microbiology, 2012, 3, 402.	1.5	36
56	In situ thermal dynamics of shallow water corals is affected by tidal patterns and irradiance. Marine Biology, 2012, 159, 1773-1782.	0.7	25
57	A Novel Epiphytic Chlorophyll <i>d</i> â€containing Cyanobacterium Isolated from a Mangroveâ€associated Red Alga. Journal of Phycology, 2012, 48, 1320-1327.	1.0	32
58	Thermal effects of tissue optics in symbiont-bearing reef-building corals. Limnology and Oceanography, 2012, 57, 1816-1825.	1.6	14
59	Light gradients and optical microniches in coral tissues. Frontiers in Microbiology, 2012, 3, 316.	1.5	147
60	Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology, 2012, 30, 198-205.	4.9	266
61	Endolithic chlorophyll <i>d</i> -containing phototrophs. ISME Journal, 2011, 5, 1072-1076.	4.4	95
62	Discovery of Cyanophage Genomes Which Contain Mitochondrial DNA Polymerase. Molecular Biology and Evolution, 2011, 28, 2269-2274.	3.5	20
63	Rapid Mass Movement of Chloroplasts during Segment Formation of the Calcifying Siphonalean Green Alga, Halimeda macroloba. PLoS ONE, 2011, 6, e20841.	1.1	13
64	Electrogenic plasma membrane H+-ATPase activity using voltage sensitive dyes. Journal of Bioenergetics and Biomembranes, 2010, 42, 387-393.	1.0	0
65	The molecular structure of the IsiA–Photosystem I supercomplex, modelled from high-resolution, crystal structures of Photosystem I and the CP43 protein. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 457-465.	0.5	14
66	Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynthesis Research, 2009, 101, 69-75.	1.6	55
67	IMAGING OF OXYGEN DYNAMICS WITHIN THE ENDOLITHIC ALGAL COMMUNITY OF THE MASSIVE CORAL <i>PORITES LOBATA</i> ¹ . Journal of Phycology, 2008, 44, 541-550.	1.0	53
68	The Function of MgDVP in a Chlorophyll d-Containing Organism. , 2008, , 1125-1128.		1
69	Photosynthesis and Metabolism in Seagrasses at the Cellular Level. , 2007, , 323-345.		4
70	Shopping for plastids. Trends in Plant Science, 2007, 12, 189-195.	4.3	152
71	An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophylldcontaining photosystem I ofAcaryochloris marina. FEBS Letters, 2007, 581, 1567-1571.	1.3	7
72	Chapter 22. The Evolution of Photosynthesis. Comprehensive Series in Photochemical and Photobiological Sciences, 2007, , 491-521.	0.3	4

#	Article	IF	CITATIONS
73	Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the Chlorophyll d-containing oxyphotobacterium Acaryochloris marina. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 127-135.	0.5	52
74	Evolution of the Inner Light-Harvesting Antenna Protein Family of Cyanobacteria, Algae, and Plants. Journal of Molecular Evolution, 2007, 64, 321-331.	0.8	19
75	Biology of the Chlorophyll D-Containing Cyanobacterium Acaryochloris Marina. Cellular Origin and Life in Extreme Habitats, 2007, , 101-123.	0.3	11
76	The Evolution of Chlorophylls and Photosynthesis. , 2006, , 261-282.		30
77	CORAL PHOTOBIOLOGY STUDIED WITH A NEW IMAGING PULSE AMPLITUDE MODULATED FLUOROMETER1. Journal of Phycology, 2005, 41, 335-342.	1.0	89
78	A niche for cyanobacteria containing chlorophyll d. Nature, 2005, 433, 820-820.	13.7	185
79	Unique Origin and Lateral Transfer of Prokaryotic Chlorophyll-b and Chlorophyll-d Light-Harvesting Systems. Molecular Biology and Evolution, 2005, 22, 21-28.	3.5	67
80	Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Photochemical and Photobiological Sciences, 2005, 4, 1016.	1.6	48
81	The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochemical and Photobiological Sciences, 2005, 4, 1060.	1.6	85
82	Structure of a large photosystem II supercomplex fromAcaryochloris marina. FEBS Letters, 2005, 579, 1306-1310.	1.3	61
83	Chlorophyll d: the puzzle resolved. Trends in Plant Science, 2005, 10, 355-357.	4.3	114
84	Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 367-374.	0.5	46
85	Contributions of Henrik Lundegårdh. , 2005, , 139-144.		5
86	The Biasing Effect of Compositional Heterogeneity on Phylogenetic Estimates May be Underestimated. Systematic Biology, 2004, 53, 638-643.	2.7	234
87	Raman properties of chlorophyll d, the major pigment of Acaryochloris marina: studies using both Raman spectroscopy and density functional theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 527-534.	2.0	31
88	The Algae and their General Characteristics. Advances in Photosynthesis and Respiration, 2003, , 1-10.	1.0	7
89	Algal Plastids: Their Fine Structure and Properties. Advances in Photosynthesis and Respiration, 2003, , 11-28.	1.0	30
90	Light-Harvesting Systems in Algae. Advances in Photosynthesis and Respiration, 2003, , 277-304.	1.0	43

#	Article	IF	CITATIONS
91	Photoinhibition, UV-B and Algal Photosynthesis. Advances in Photosynthesis and Respiration, 2003, , 351-384.	1.0	56
92	Excitation Dynamics in the Core Antenna in the Photosystem I Reaction Center of the Chlorophylld-Containing Photosynthetic ProkaryoteAcaryochloris marina. Journal of Physical Chemistry B, 2003, 107, 1452-1457.	1.2	13
93	Photosynthesis in Algae. Advances in Photosynthesis and Respiration, 2003, , .	1.0	53
94	Examination of the Photophysical Processes of Chlorophyll d Leading to a Clarification of Proposed Uphill Energy Transfer Processes in Cells of Acaryochloris marina¶. Photochemistry and Photobiology, 2003, 77, 628.	1.3	26
95	Chlorophyll <i>d</i> as the major photopigment in <i>Acaryochloris marina</i> . Journal of Porphyrins and Phthalocyanines, 2002, 06, 763-773.	0.4	22
96	Raman spectroscopy of chlorophyll d from Acaryochloris marina. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 89-91.	0.5	28
97	The major light-harvesting pigment protein ofAcaryochloris marina. FEBS Letters, 2002, 514, 149-152.	1.3	79
98	An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research, 2002, 74, 281-293.	1.6	135
99	Estimating Internal Phosphorus Pools in Macroalgae Using Radioactive Phosphorus and Trichloroacetic Acid Extracts. Analytical Biochemistry, 2001, 297, 191-192.	1.1	4
100	Fluorescent pigments in corals are photoprotective. Nature, 2000, 408, 850-853.	13.7	579
101	Multiple strategies for a high light existence in a tropical marine macroalga. Photosynthesis Research, 1997, 53, 149-159.	1.6	17
102	Gene duplication and the evolution of photosynthetic reaction center proteins. FEBS Letters, 1996, 385, 193-196.	1.3	15
103	Photosynthetic inorganic carbon acquisition of Posidonia australis. Aquatic Botany, 1996, 55, 149-157.	0.8	51
104	Plastid origins. Trends in Ecology and Evolution, 1992, 7, 378-383.	4.2	25
105	Controversy on chloroplast origins. FEBS Letters, 1992, 301, 127-131.	1.3	64
106	CALCIFICATION IN THE GREEN ALGA HALIMEDA. I. AN ULTRASTRUCTURE STUDY OF THALLUS DEVELOPMENT1. Journal of Phycology, 1977, 13, 6-16.	1.0	63
107	Calcification in the Green AlgaHalimeda. Journal of Experimental Botany, 1976, 27, 879-893.	2.4	136
108	Calcification in the Green AlgaHalimeda. Journal of Experimental Botany, 1976, 27, 894-907.	2.4	42

#	Article	IF	CITATIONS
109	Photosynthesis and Metabolism in Seagrasses at the Cellular Level. , 0, , 323-345.		9