Paolo Restuccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2595548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corrosion inhibition in acidic environments: key interfacial insights with photoelectron spectroscopy. Faraday Discussions, 2022, 236, 374-388.	3.2	6
2	A transferable prediction model of molecular adsorption on metals based on adsorbate and substrate properties. Physical Chemistry Chemical Physics, 2022, 24, 16545-16555.	2.8	3
3	Corrosion inhibition of carbon steel in hydrochloric acid: Elucidating the performance of an imidazoline-based surfactant. Corrosion Science, 2021, 180, 109195.	6.6	54
4	First-Principles Simulation—Nano-Theory. Crystals, 2021, 11, 855.	2.2	0
5	Monitoring water and oxygen splitting at graphene edges and folds: Insights into the lubricity of graphitic materials. Carbon, 2020, 156, 93-103.	10.3	38
6	Quantum Mechanics/Molecular Mechanics (QM/MM) applied to tribology: Real-time monitoring of tribochemical reactions of water at graphene edges. Computational Materials Science, 2020, 173, 109400.	3.0	9
7	Tribochemical Reactions of MoDTC Lubricant Additives with Iron by Quantum Mechanics/Molecular Mechanics Simulations. Journal of Physical Chemistry C, 2020, 124, 13688-13694.	3.1	19
8	Superlubricity in phosphorene identified by means of ab initio calculations. 2D Materials, 2020, 7, 025033.	4.4	32
9	Characterization of Molybdenum Dithiocarbamates by First-Principles Calculations. Journal of Physical Chemistry A, 2019, 123, 7007-7015.	2.5	17
10	Altering the Properties of Graphene on Cu(111) by Intercalation of Potassium Bromide. ACS Nano, 2019, 13, 5485-5492.	14.6	20
11	Structural Ordering of Molybdenum Disulfide Studied via Reactive Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 2018, 10, 8937-8946.	8.0	34
12	Phosphorus Adsorption on Fe(110): An ab Initio Comparative Study of Iron Passivation by Different Adsorbates. Journal of Physical Chemistry C, 2018, 122, 28105-28112.	3.1	16
13	Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces. Physical Review Letters, 2018, 121, 026804.	7.8	115
14	Ideal adhesive and shear strengths of solid interfaces: A high throughput ab initio approach. Computational Materials Science, 2018, 154, 517-529.	3.0	22
15	Surface passivation by graphene in the lubrication of iron: A comparison with bronze. Carbon, 2017, 116, 375-380.	10.3	56
16	Graphene and MoS2 interacting with water: A comparison by ab initio calculations. Carbon, 2016, 107, 878-884.	10.3	114
17	Tribochemistry of graphene on iron and its possible role in lubrication of steel. Carbon, 2016, 106, 118-124.	10.3	100
18	Size-dependent commensurability and its possible role in determining the frictional behavior of adsorbed systems. Physical Chemistry Chemical Physics, 2016, 18, 28997-29004.	2.8	8

#	Article	IF	CITATIONS
19	Modeling phosphorene and \$\$hbox {MoS}_{2}\$\$ interacting with iron: lubricating effects compared to graphene. Journal of Nanostructure in Chemistry, 0, , 1.	9.1	5