
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/259532/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanochemical reactions of GaN-Al2O3 interface at the nanoasperity contact: Roles of crystallographic polarity and ambient humidity. Friction, 2022, 10, 1005-1018.                        | 6.4  | 38        |
| 2  | Effect of humidity on friction, wear, and plastic deformation during nanoscratch of soda lime silica glass. Journal of the American Ceramic Society, 2022, 105, 1367-1374.                   | 3.8  | 4         |
| 3  | Nanoscopic humidity-dependent adhesion behaviors of 2D materials. Applied Surface Science, 2022, 572, 151394.                                                                                | 6.1  | 15        |
| 4  | Environmental effects on superlubricity of hydrogenated diamond-like carbon: Understanding<br>tribochemical kinetics in O2 and H2O environments. Applied Surface Science, 2022, 580, 152299. | 6.1  | 9         |
| 5  | Role of Interfacial Bonding in Tribochemical Wear. Frontiers in Chemistry, 2022, 10, 852371.                                                                                                 | 3.6  | 9         |
| 6  | Factors governing wear of soda lime silicate glass: Insights from comparison between nano- and macro-scale wear. Tribology International, 2022, 171, 107566.                                 | 5.9  | 8         |
| 7  | Water adsorption on silica and calciumâ€boroaluminosilicate glass surfaces—Thickness and hydrogen<br>bonding of water layer. Journal of the American Ceramic Society, 2021, 104, 1568-1580.  | 3.8  | 21        |
| 8  | Origin of low friction in hydrogenated diamond-like carbon films due to graphene nanoscroll formation depending on sliding mode: Unidirection and reciprocation. Carbon, 2021, 173, 696-704. | 10.3 | 48        |
| 9  | Origin of High Friction at Graphene Step Edges on Graphite. ACS Applied Materials & Interfaces, 2021, 13, 1895-1902.                                                                         | 8.0  | 16        |
| 10 | Role of interfacial water in adhesion, friction, and wear—A critical review. Friction, 2021, 9, 1-28.                                                                                        | 6.4  | 53        |
| 11 | Effect of Native Oxide Layer on Mechanochemical Reaction at the GaN–Al2O3 Interface. Frontiers in Chemistry, 2021, 9, 672240.                                                                | 3.6  | 2         |
| 12 | Interplay between counter-surface chemistry and mechanical activation in mechanochemical removal of N-faced GaN surface in humid ambient. Tribology International, 2021, 159, 107004.        | 5.9  | 49        |
| 13 | Friction and Wear Behaviors of Steel Ball Against Polyimide-PTFE Composite Under Rolling-Sliding<br>Motion. Tribology Letters, 2021, 69, 1.                                                  | 2.6  | 13        |
| 14 | Temporary or permanent liquid superlubricity failure depending on shear-induced evolution of surface topography. Tribology International, 2021, 161, 107076.                                 | 5.9  | 17        |
| 15 | Activation Volume in Shear-Driven Chemical Reactions. Tribology Letters, 2021, 69, 1.                                                                                                        | 2.6  | 27        |
| 16 | Measuring nanoscale friction at graphene step edges. Friction, 2020, 8, 802-811.                                                                                                             | 6.4  | 11        |
| 17 | Nanoasperity Adhesion of the Silicon Surface in Humid Air: The Roles of Surface Chemistry and Oxidized Layer Structures. Langmuir, 2020, 36, 5483-5491.                                      | 3.5  | 17        |
| 18 | Role of mechanically-driven distorted microstructure in mechanochemical removal of silicon.<br>Applied Surface Science, 2020, 520, 146337.                                                   | 6.1  | 8         |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Development of a symmetrical micro-beam minimizing horizontal drift for indentation and scratch.<br>Review of Scientific Instruments, 2020, 91, 043702.                                              | 1.3  | 1         |
| 20 | Study on the polishing mechanism of pH-dependent tribochemical removal in CMP of CaF2 crystal.<br>Tribology International, 2020, 150, 106370.                                                        | 5.9  | 11        |
| 21 | Interplay between solution chemistry and mechanical activation in friction-induced material removal of silicon surface in aqueous solution. Tribology International, 2020, 148, 106319.              | 5.9  | 21        |
| 22 | Identifying Physical and Chemical Contributions to Friction: A Comparative Study of Chemically Inert and Active Graphene Step Edges. ACS Applied Materials & amp; Interfaces, 2020, 12, 30007-30015. | 8.0  | 6         |
| 23 | 2D nano-materials beyond graphene: from synthesis to tribological studies. Applied Nanoscience<br>(Switzerland), 2020, 10, 3353-3388.                                                                | 3.1  | 89        |
| 24 | Anisotropic Optical and Frictional Properties of Langmuir–Blodgett Film Consisting of<br>Uniaxiallyâ€Aligned Rodâ€Shaped Cellulose Nanocrystals. Advanced Materials Interfaces, 2020, 7, 1902169.    | 3.7  | 12        |
| 25 | Friction-induced subsurface densification of glass at contact stress far below indentation damage threshold. Acta Materialia, 2020, 189, 166-173.                                                    | 7.9  | 41        |
| 26 | Roles of phase transition and surface property evolution in nanotribological behaviors of H-DLC:<br>Effects of thermal and UV irradiation treatments. Applied Surface Science, 2020, 514, 145960.    | 6.1  | 19        |
| 27 | Mechanochemical Reactions of Adsorbates at Tribological Interfaces: Tribopolymerizations of Allyl<br>Alcohol Coadsorbed with Water on Silicon Oxide. Langmuir, 2019, 35, 15451-15458.                | 3.5  | 13        |
| 28 | Chemical and physical origins of friction on surfaces with atomic steps. Science Advances, 2019, 5, eaaw0513.                                                                                        | 10.3 | 62        |
| 29 | Friction at single-layer graphene step edges due to chemical and topographic interactions. Carbon, 2019, 154, 67-73.                                                                                 | 10.3 | 38        |
| 30 | Effect of Atomic Corrugation on Adhesion and Friction: A Model Study with Graphene Step Edges.<br>Journal of Physical Chemistry Letters, 2019, 10, 6455-6461.                                        | 4.6  | 15        |
| 31 | Thickness and Structure of Adsorbed Water Layer and Effects on Adhesion and Friction at<br>Nanoasperity Contact. Colloids and Interfaces, 2019, 3, 55.                                               | 2.1  | 54        |
| 32 | Effect of Ambient Chemistry on Friction at the Basal Plane of Graphite. ACS Applied Materials &<br>Interfaces, 2019, 11, 40800-40807.                                                                | 8.0  | 10        |
| 33 | Temperature-Dependent Mechanochemical Wear of Silicon in Water: The Role of Si–OH Surfacial<br>Groups. Langmuir, 2019, 35, 7735-7743.                                                                | 3.5  | 26        |
| 34 | Effect of abrasive particle degradation on tribochemical wear of monocrystalline silicon. Wear, 2019, 426-427, 1240-1245.                                                                            | 3.1  | 2         |
| 35 | Key Role of Transfer Layer in Load Dependence of Friction on Hydrogenated Diamond-Like Carbon Films<br>in Humid Air and Vacuum. Materials, 2019, 12, 1550.                                           | 2.9  | 33        |
| 36 | Self-lubrication of Si/SiO2 interface achieved through running-in at low sliding speed. Wear, 2019, 426-427, 828-834.                                                                                | 3.1  | 12        |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Surface Structure Dependence of Mechanochemical Etching: Scanning Probe-Based Nanolithography<br>Study on Si(100), Si(110), and Si(111). ACS Applied Materials & Interfaces, 2019, 11, 20583-20588.                                                                  | 8.0  | 30        |
| 38 | Effect of counter-surface chemistry on defect-free material removal of monocrystalline silicon.<br>Wear, 2019, 426-427, 1233-1239.                                                                                                                                   | 3.1  | 11        |
| 39 | Dependence of water adsorption on the surface structure of silicon wafers aged under different environmental conditions. Physical Chemistry Chemical Physics, 2019, 21, 26041-26048.                                                                                 | 2.8  | 23        |
| 40 | Gradual degeneration of liquid superlubricity: Transition from superlubricity to ordinary lubrication, and lubrication failure. Tribology International, 2019, 130, 352-358.                                                                                         | 5.9  | 11        |
| 41 | Stress-enhanced dissolution and delamination wear of crystal CaF2 in water condition. Wear, 2019, 418-419, 86-93.                                                                                                                                                    | 3.1  | 4         |
| 42 | Differences in surface failure modes of soda lime silica glass under normal indentation versus<br>tangential shear: A comparative study on Na <sup>+</sup> /K <sup>+</sup> â€ion exchange effects. Journal<br>of the American Ceramic Society, 2019, 102, 1665-1676. | 3.8  | 16        |
| 43 | Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nature Communications, 2018, 9, 1542.                                                                                                                       | 12.8 | 124       |
| 44 | Water Adsorption on Hydrophilic and Hydrophobic Surfaces of Silicon. Journal of Physical Chemistry C, 2018, 122, 11385-11391.                                                                                                                                        | 3.1  | 118       |
| 45 | Nondestructive nanofabrication on monocrystalline silicon via site-controlled formation and removal of oxide mask. Applied Physics Express, 2018, 11, 116501.                                                                                                        | 2.4  | 7         |
| 46 | Perspectives of the Friction Mechanism of Hydrogenated Diamond-Like Carbon Film in Air by Varying<br>Sliding Velocity. Coatings, 2018, 8, 331.                                                                                                                       | 2.6  | 13        |
| 47 | Revealing silicon crystal defects by conductive atomic force microscope. Applied Physics Letters, 2018, 113, .                                                                                                                                                       | 3.3  | 13        |
| 48 | Effects of surface chemical groups and environmental media on tribochemical running-in behaviors of silicon surface. Tribology International, 2018, 128, 174-180.                                                                                                    | 5.9  | 17        |
| 49 | Spectroscopic ellipsometry study of thickness and porosity of the alteration layer formed on international simple glass surface in aqueous corrosion conditions. Npj Materials Degradation, 2018, 2, .                                                               | 5.8  | 44        |
| 50 | Effect of Humidity on Friction and Wear—A Critical Review. Lubricants, 2018, 6, 74.                                                                                                                                                                                  | 2.9  | 106       |
| 51 | Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon. Scientific<br>Reports, 2017, 7, 40750.                                                                                                                                      | 3.3  | 37        |
| 52 | Shear-Induced Structural Changes and Origin of Ultralow Friction of Hydrogenated Diamond-like<br>Carbon (DLC) in Dry Environment. ACS Applied Materials & Interfaces, 2017, 9, 16704-16714.                                                                          | 8.0  | 127       |
| 53 | Mechanochemistry at Solid Surfaces: Polymerization of Adsorbed Molecules by Mechanical Shear at<br>Tribological Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 3142-3148.                                                                                  | 8.0  | 99        |
| 54 | Effect of abrasive particle size on tribochemical wear of monocrystalline silicon. Tribology<br>International, 2017, 109, 222-228.                                                                                                                                   | 5.9  | 29        |

| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water<br>Meniscus around the Contact, or Water Layer Structure?. Langmuir, 2017, 33, 9673-9679.                                                                                                                                  | 3.5 | 33        |
| 56 | Effect of mechanical interaction on the tribochemical wear of bare silicon in water. Wear, 2017, 376-377, 1307-1313.                                                                                                                                                                                                       | 3.1 | 10        |
| 57 | Friction and Tribochemical Wear Behaviors of Native Oxide Layer on Silicon at Nanoscale. Tribology<br>Letters, 2017, 65, 1.                                                                                                                                                                                                | 2.6 | 30        |
| 58 | Threshold contact pressure for the material removal on monocrystalline silicon by SiO 2 microsphere. Wear, 2017, 376-377, 188-193.                                                                                                                                                                                         | 3.1 | 28        |
| 59 | Sliding Speed-Dependent Tribochemical Wear of Oxide-Free Silicon. Nanoscale Research Letters, 2017, 12, 404.                                                                                                                                                                                                               | 5.7 | 19        |
| 60 | Humidity effects on tribochemical removal of GaAs surfaces. Applied Physics Express, 2016, 9, 066703.                                                                                                                                                                                                                      | 2.4 | 14        |
| 61 | Investigation of silicon wear against non-porous and micro-porous SiO <sub>2</sub> spheres in water and in humid air. RSC Advances, 2016, 6, 89627-89634.                                                                                                                                                                  | 3.6 | 23        |
| 62 | Role of water in the tribochemical removal of bare silicon. Applied Surface Science, 2016, 390, 696-702.                                                                                                                                                                                                                   | 6.1 | 37        |
| 63 | Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field. Applied Surface Science, 2016, 390, 216-223.                                                                                                | 6.1 | 89        |
| 64 | Boundary lubrication effect of organic residue left on surface after evaporation of organic cleaning solvent. Wear, 2016, 350-351, 21-26.                                                                                                                                                                                  | 3.1 | 36        |
| 65 | Humidity Dependence of Tribochemical Wear of Monocrystalline Silicon. ACS Applied Materials &<br>Interfaces, 2015, 7, 14785-14792.                                                                                                                                                                                         | 8.0 | 80        |
| 66 | Tribology of Si/SiO <sub>2</sub> in Humid Air: Transition from Severe Chemical Wear to Wearless<br>Behavior at Nanoscale. Langmuir, 2015, 31, 149-156.                                                                                                                                                                     | 3.5 | 64        |
| 67 | Running-in process of Si-SiO x /SiO2 pair at nanoscale—Sharp drops in friction and wear rate during initial cycles. Friction, 2013, 1, 81-91.                                                                                                                                                                              | 6.4 | 50        |
| 68 | Investigation of humidity-dependent nanotribology behaviors of Si(1 0 0)/SiO2 pair moving from stick to slip. Applied Surface Science, 2013, 265, 192-200.                                                                                                                                                                 | 6.1 | 38        |
| 69 | Role of Tribochemistry in Nanowear of Single-Crystalline Silicon. ACS Applied Materials &<br>Interfaces, 2012, 4, 1585-1593.                                                                                                                                                                                               | 8.0 | 93        |
| 70 | Water Adsorption Isotherms on CH <sub>3</sub> -, OH-, and COOH-Terminated Organic Surfaces at<br>Ambient Conditions Measured with PM-RAIRS. Langmuir, 2012, 28, 15263-15269.                                                                                                                                               | 3.5 | 30        |
| 71 | Coadsorption of <i>n</i> -Propanol and Water on SiO <sub>2</sub> : Study of Thickness, Composition,<br>and Structure of Binary Adsorbate Layer Using Attenuated Total Reflection Infrared (ATR-IR) and Sum<br>Frequency Generation (SFG) Vibration Spectroscopy. Journal of Physical Chemistry C, 2012, 116,<br>9909-9916. | 3.1 | 35        |
| 72 | Nanofretting behaviours of ultrathin DLC coating on Si(100) substrate. Wear, 2011, 271, 1980-1986.                                                                                                                                                                                                                         | 3.1 | 19        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries. Journal of Colloid and Interface Science, 2010, 352, 549-557. | 9.4  | 39        |
| 74 | Effects of Surface Chemistry on Structure and Thermodynamics of Water Layers at Solidâ `Vapor<br>Interfaces. Journal of Physical Chemistry C, 2009, 113, 2128-2133.                          | 3.1  | 83        |
| 75 | Macro- to Nanoscale Wear Prevention via Molecular Adsorption. Langmuir, 2008, 24, 155-159.                                                                                                   | 3.5  | 97        |
| 76 | Nanotribology and MEMS. Nano Today, 2007, 2, 22-29.                                                                                                                                          | 11.9 | 329       |
| 77 | Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. Journal of Chemical Physics, 2006, 124, 174712.                          | 3.0  | 205       |
| 78 | Evolution of the Adsorbed Water Layer Structure on Silicon Oxide at Room Temperature. Journal of<br>Physical Chemistry B, 2005, 109, 16760-16763.                                            | 2.6  | 614       |
| 79 | Inverse Relationship between Thickness and Wear of Fluorinated Graphene: "Thinner Is Better― Nano<br>Letters, 0, , .                                                                         | 9.1  | 10        |