
Gaya K Amarasinghe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2595167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrophilic properties of itaconate and derivatives regulate theÂlκBζ–ATF3 inflammatory axis. Nature, 2018, 556, 501-504.	27.8	438
2	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
3	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host and Microbe, 2020, 28, 475-485.e5.	11.0	380
4	NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the Î ⁻ -RNA packaging signal. implications for genome recognition 1 1Edited by P. Wright. Journal of Molecular Biology, 2000, 301, 491-511.	4.2	322
5	Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nature Immunology, 2018, 19, 130-140.	14.5	239
6	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
7	Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. Nature Reviews Microbiology, 2015, 13, 663-676.	28.6	199
8	Ebola Virus VP24 Targets a Unique NLS Binding Site on Karyopherin Alpha 5 to Selectively Compete with Nuclear Import of Phosphorylated STAT1. Cell Host and Microbe, 2014, 16, 187-200.	11.0	198
9	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
10	Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nature Structural and Molecular Biology, 2010, 17, 165-172.	8.2	177
11	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
12	Mutual Antagonism between the Ebola Virus VP35 Protein and the RIG-I Activator PACT Determines Infection Outcome. Cell Host and Microbe, 2013, 14, 74-84.	11.0	154
13	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153
14	Structure of the Ebola VP35 interferon inhibitory domain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 411-416.	7.1	149
15	A Viral RNA Structural Element Alters Host Recognition of Nonself RNA. Science, 2014, 343, 783-787.	12.6	143
16	An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions. Cell Reports, 2015, 11, 376-389.	6.4	136
17	Evasion of Interferon Responses by Ebola and Marburg Viruses. Journal of Interferon and Cytokine Research, 2009, 29, 511-520.	1.2	135
18	Mutations Abrogating VP35 Interaction with Double-Stranded RNA Render Ebola Virus Avirulent in Guinea Pigs. Journal of Virology, 2010, 84, 3004-3015.	3.4	135

#	Article	IF	CITATIONS
19	Structural and Energetic Mechanisms of Cooperative Autoinhibition and Activation of Vav1. Cell, 2010, 140, 246-256.	28.9	135
20	Comparison of the immunogenicity of <scp>BNT162b2</scp> and <scp>CoronaVac COVID</scp> â€19 vaccines in Hong Kong. Respirology, 2022, 27, 301-310.	2.3	127
21	Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication. Cell, 2018, 175, 1917-1930.e13.	28.9	108
22	Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Reports, 2021, 34, 108756.	6.4	105
23	NMR structure of stem-loop SL2 of the HIV-1 Î [.] RNA packaging signal reveals a novel A-U-A base-triple platform 1 1Edited by I. Tinoco. Journal of Molecular Biology, 2000, 299, 145-156.	4.2	95
24	Internal dynamics control activation and activity of the autoinhibited Vav DH domain. Nature Structural and Molecular Biology, 2008, 15, 613-618.	8.2	95
25	The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway. Cell Reports, 2014, 6, 1017-1025.	6.4	95
26	Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity, 2018, 48, 487-499.e5.	14.3	94
27	Structural basis for Marburg virus VP35–mediated immune evasion mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20661-20666.	7.1	90
28	Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nature Microbiology, 2018, 3, 1099-1108.	13.3	90
29	Basic Residues within the Ebolavirus VP35 Protein Are Required for Its Viral Polymerase Cofactor Function. Journal of Virology, 2010, 84, 10581-10591.	3.4	80
30	Stem-loop SL4 of the HIV-1 Î [°] RNA packaging signal exhibits weak affinity for the nucleocapsid protein. structural studies and implications for genome recognition. Journal of Molecular Biology, 2001, 314, 961-970.	4.2	79
31	ICTV Virus Taxonomy Profile: Filoviridae. Journal of General Virology, 2019, 100, 911-912.	2.9	78
32	MRI Is a DNA Damage Response Adaptor during Classical Non-homologous End Joining. Molecular Cell, 2018, 71, 332-342.e8.	9.7	76
33	In Silico Derived Small Molecules Bind the Filovirus VP35 Protein and Inhibit Its Polymerase Cofactor Activity. Journal of Molecular Biology, 2014, 426, 2045-2058.	4.2	75
34	Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins. Cell Reports, 2016, 14, 1632-1640.	6.4	75
35	Development of RNA Aptamers Targeting Ebola Virus VP35. Biochemistry, 2013, 52, 8406-8419.	2.5	73
36	Filoviral Immune Evasion Mechanisms. Viruses, 2011, 3, 1634-1649.	3.3	71

#	Article	IF	CITATIONS
37	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
38	An Upstream Open Reading Frame Modulates Ebola Virus Polymerase Translation and Virus Replication. PLoS Pathogens, 2013, 9, e1003147.	4.7	66
39	Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nature Communications, 2018, 9, 465.	12.8	63
40	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
41	Structural and Functional Characterization of Reston Ebola Virus VP35 Interferon Inhibitory Domain. Journal of Molecular Biology, 2010, 399, 347-357.	4.2	61
42	<i>Ebolavirus</i> VP35 is a multifunctional virulence factor. Virulence, 2010, 1, 526-531.	4.4	58
43	When your cap matters: structural insights into self vs non-self recognition of 5′ RNA by immunomodulatory host proteins. Current Opinion in Structural Biology, 2016, 36, 133-141.	5.7	58
44	A Secreted Viral Nonstructural Protein Determines Intestinal Norovirus Pathogenesis. Cell Host and Microbe, 2019, 25, 845-857.e5.	11.0	57
45	Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional consequences of the C-terminal domain. IScience, 2021, 24, 102681.	4.1	57
46	Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell, 2018, 172, 966-978.e12.	28.9	51
47	Structural insights into RNA recognition and activation of RIG-I-like receptors. Current Opinion in Structural Biology, 2012, 22, 297-303.	5.7	47
48	Ebola Virus VP35 Interaction with Dynein LC8 Regulates Viral RNA Synthesis. Journal of Virology, 2015, 89, 5148-5153.	3.4	47
49	Lrp1 is a host entry factor for Rift Valley fever virus. Cell, 2021, 184, 5163-5178.e24.	28.9	46
50	Ebola virus VP30 and nucleoprotein interactions modulate viral RNA synthesis. Nature Communications, 2017, 8, 15576.	12.8	42
51	Aptamers in Virology: Recent Advances and Challenges. Frontiers in Microbiology, 2012, 3, 29.	3.5	41
52	DRBP76 Associates With Ebola Virus VP35 and Suppresses Viral Polymerase Function. Journal of Infectious Diseases, 2011, 204, S911-S918.	4.0	40
53	Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends in Microbiology, 2012, 20, 139-146.	7.7	39
54	Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. Journal of Virology, 2015, 89, 9465-9476.	3.4	38

#	Article	IF	CITATIONS
55	Advanced Methods for Accessing Protein Shape-Shifting Present New Therapeutic Opportunities. Trends in Biochemical Sciences, 2019, 44, 351-364.	7.5	34
56	Structure-Function Analysis of the Curli Accessory Protein CsgE Defines Surfaces Essential for Coordinating Amyloid Fiber Formation. MBio, 2018, 9, .	4.1	33
57	Acidic Region Tyrosines Provide Access Points for Allosteric Activation of the Autoinhibited Vav1 Dbl Homology Domainâ€. Biochemistry, 2005, 44, 15257-15268.	2.5	32
58	Defining a Two-pronged Structural Model for PB1 (Phox/Bem1p) Domain Interaction in Plant Auxin Responses. Journal of Biological Chemistry, 2015, 290, 12868-12878.	3.4	31
59	The Cap-Snatching SFTSV Endonuclease Domain Is an Antiviral Target. Cell Reports, 2020, 30, 153-163.e5.	6.4	31
60	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	4.2	31
61	Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nature Microbiology, 2017, 2, 17101.	13.3	29
62	Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses. Journal of Molecular Biology, 2016, 428, 3483-3494.	4.2	26
63	Filovirus Strategies to Escape Antiviral Responses. Current Topics in Microbiology and Immunology, 2017, 411, 293-322.	1.1	25
64	Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses. Journal of Molecular Biology, 2016, 428, 3467-3482.	4.2	24
65	Liquid Phase Partitioning in Virus Replication: Observations and Opportunities. Annual Review of Virology, 2022, 9, 285-306.	6.7	24
66	Applications of Parametrized NMR Spin Systems of Small Molecules. Analytical Chemistry, 2018, 90, 10646-10649.	6.5	23
67	A Sensitive in Vitro High-Throughput Screen To Identify Pan-filoviral Replication Inhibitors Targeting the VP35–NP Interface. ACS Infectious Diseases, 2017, 3, 190-198.	3.8	22
68	Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses. Viruses, 2017, 9, 106.	3.3	22
69	Role of Antibodies in Protection Against Ebola Virus in Nonhuman Primates Immunized With Three Vaccine Platforms. Journal of Infectious Diseases, 2018, 218, S553-S564.	4.0	22
70	SARS-CoV-2 accessory proteins reveal distinct serological signatures in children. Nature Communications, 2022, 13, .	12.8	22
71	VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability. Journal of Virology, 2017, 91, .	3.4	21
72	Filovirus Structural Biology: The Molecules in the Machine. Current Topics in Microbiology and Immunology, 2017, 411, 381-417.	1.1	21

#	Article	IF	CITATIONS
73	A cryptic pocket in Ebola VP35 allosterically controls RNA binding. Nature Communications, 2022, 13, 2269.	12.8	19
74	Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Reports, 2021, 37, 109803.	6.4	18
75	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	5.6	17
76	Conservation of Structure and Immune Antagonist Functions of Filoviral VP35 Homologs Present in Microbat Genomes. Cell Reports, 2018, 24, 861-872.e6.	6.4	16
77	Human Metapneumovirus Phosphoprotein Independently Drives Phase Separation and Recruits Nucleoprotein to Liquid-Like Bodies. MBio, 2022, 13, e0109922.	4.1	15
78	The intrinsically disordered protein TgIST from Toxoplasma gondii inhibits STAT1 signaling by blocking cofactor recruitment. Nature Communications, 2022, 13, .	12.8	15
79	Potent Neutralization of Staphylococcal Enterotoxin B In Vivo by Antibodies that Block Binding to the T-Cell Receptor. Journal of Molecular Biology, 2019, 431, 4354-4367.	4.2	14
80	Expression, purification, crystallization and preliminary X-ray studies of the Ebola VP35 interferon inhibitory domain. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 163-165.	0.7	13
81	Rapid purification of RNA secondary structures. Nucleic Acids Research, 2003, 31, 135e-135.	14.5	12
82	Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets. Antiviral Research, 2019, 162, 90-100.	4.1	12
83	Structural basis for IFN antagonism by human respiratory syncytial virus nonstructural protein 2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2020587118.	7.1	12
84	Crystallization and preliminary X-ray analysis of Ebola VP35 interferon inhibitory domain mutant proteins. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 689-692.	0.7	11
85	Rapid detection of an Ebola biomarker with optical microring resonators. Cell Reports Methods, 2022, 2, 100234.	2.9	9
86	Global phosphoproteomic analysis of Ebola virions reveals a novel role for VP35 phosphorylation-dependent regulation of genome transcription. Cellular and Molecular Life Sciences, 2020, 77, 2579-2603.	5.4	8
87	Nonâ€canonical prolineâ€tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO Journal, 2021, 40, e105658.	7.8	8
88	Development of Monoclonal Antibodies to Detect for SARS-CoV-2 Proteins. Journal of Molecular Biology, 2022, 434, 167583.	4.2	4
89	Backbone resonance assignments and secondary structure of Ebola nucleoprotein 600–739 construct. Biomolecular NMR Assignments, 2019, 13, 315-319.	0.8	3
90	Fragment screening targeting Ebola virus nucleoprotein C-terminal domain identifies lead candidates. Antiviral Research, 2020, 180, 104822.	4.1	3

#	Article	IF	CITATIONS
91	Nipah Virus V Protein Binding Alters MDA5 Helicase Folding Dynamics. ACS Infectious Diseases, 2022, 8, 118-128.	3.8	3
92	Small Molecule Compounds That Inhibit Antioxidant Response Gene Expression in an Inducer-Dependent Manner. ACS Infectious Diseases, 2020, 6, 489-502.	3.8	1
93	Domain-specific biochemical and serological characterization of SARS-CoV-2 nucleocapsid protein. STAR Protocols, 2021, 2, 100906.	1.2	1
94	Dynamic Origins of Interdomain Cooperativity in the Vav1 Proto-Oncoprotein. Biophysical Journal, 2009, 96, 3a.	0.5	0
95	A Calcium-Fortified Viral Matrix Protein. Structure, 2014, 22, 5-7.	3.3	0
96	INNATE IMMUNE EVASION MECHANISMS OF FILOVIRUSES. , 2015, , 557-586.		0
97	Ebola Virus Replication Stands Out. Trends in Microbiology, 2019, 27, 565-566.	7.7	0
98	Cryo-EM analysis of Ebola virus nucleocapsid-like assembly. STAR Protocols, 2022, 3, 101030.	1.2	0
99	Monoclonal antibodies binding data for SARS-CoV-2 proteins. Data in Brief, 2022, , 108415.	1.0	0