
Maria-Beatrice Coltelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2595134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 2009, 94, 74-82.	2.7	370
2	Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers, 2020, 12, 1558.	2.0	209
3	State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review. Coatings, 2016, 6, 1.	1.2	164
4	Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: An experimental and modelling study. Reactive and Functional Polymers, 2012, 72, 50-60.	2.0	117
5	Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). European Polymer Journal, 2017, 93, 822-832.	2.6	113
6	Poly(lactic acid) properties as a consequence of poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 2008, 110, 1250-1262.	1.3	110
7	The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends. Polymer Degradation and Stability, 2010, 95, 332-341.	2.7	102
8	Rubber Toughening of Polylactic Acid (PLA) with Poly(butylene adipate-co-terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior while Varying Temperature and Test Speed. European Polymer Journal, 2019, 115, 125-137.	2.6	97
9	Isothermal Coldâ€Crystallization of PLA/PBAT Blends With and Without the Addition of Acetyl Tributyl Citrate. Macromolecular Chemistry and Physics, 2012, 213, 36-48.	1.1	88
10	Chitin Nanofibrils in Poly(Lactic Acid) (PLA) Nanocomposites: Dispersion and Thermo-Mechanical Properties. International Journal of Molecular Sciences, 2019, 20, 504.	1.8	81
11	Compatible blends of biorelated polyesters through catalytic transesterification in the melt. Polymer Degradation and Stability, 2011, 96, 982-990.	2.7	80
12	Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion. Materials, 2018, 11, 148.	1.3	78
13	Compatibilization and property enhancement of poly(lactic acid)/polycarbonate blends through triacetin-mediated interchange reactions in the melt. Polymer, 2014, 55, 4498-4513.	1.8	75
14	Evaluation of Mechanical and Interfacial Properties of Bio-Composites Based on Poly(Lactic Acid) with Natural Cellulose Fibers. International Journal of Molecular Sciences, 2019, 20, 960.	1.8	71
15	Chitin Nanofibrils and Nanolignin as Functional Agents in Skin Regeneration. International Journal of Molecular Sciences, 2019, 20, 2669.	1.8	70
16	Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization. European Polymer Journal, 2019, 113, 78-88.	2.6	70
17	Thermo-Mechanical Properties of PLA/Short Flax Fiber Biocomposites. Applied Sciences (Switzerland), 2019, 9, 3797.	1.3	63
18	Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific Reports, 2022, 12, 6613.	1.6	60

MARIA-BEATRICE COLTELLI

#	Article	IF	CITATIONS
19	Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. Journal of Functional Biomaterials, 2020, 11, 20.	1.8	58
20	Cosmetic Packaging to Save the Environment: Future Perspectives. Cosmetics, 2019, 6, 26.	1.5	53
21	Cellulose Acetate Blends - Effect of Plasticizers on Properties and Biodegradability. Journal of Renewable Materials, 2014, 2, 35-41.	1.1	45
22	A New Carrier for Advanced Cosmeceuticals. Cosmetics, 2019, 6, 10.	1.5	45
23	Poly(lactic acid) (PLA)/Poly(butylene succinate-co-adipate) (PBSA) Compatibilized Binary Biobased Blends: Melt Fluidity, Morphological, Thermo-Mechanical and Micromechanical Analysis. Polymers, 2021, 13, 218.	2.0	45
24	Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application. Journal of Functional Biomaterials, 2020, 11, 62.	1.8	42
25	Effects of waviness on fiber-length distribution and interfacial shear strength of natural fibers reinforced composites. Composites Science and Technology, 2017, 152, 129-138.	3.8	41
26	Flat Die Extruded Biocompatible Poly(Lactic Acid) (PLA)/Poly(Butylene Succinate) (PBS) Based Films. Polymers, 2019, 11, 1857.	2.0	41
27	Chitosan and nano-structured chitin for biobased anti-microbial treatments onto cellulose based materials. European Polymer Journal, 2019, 113, 328-339.	2.6	39
28	Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films. Polymers, 2020, 12, 1366.	2.0	36
29	Properties and Skin Compatibility of Films Based on Poly(Lactic Acid) (PLA) Bionanocomposites Incorporating Chitin Nanofibrils (CN). Journal of Functional Biomaterials, 2020, 11, 21.	1.8	36
30	Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polymer International, 2015, 64, 1235-1244.	1.6	35
31	Plasticized and nanofilled poly(lactic acid)â€based cast films: Effect of plasticizer and organoclay on processability and final properties. Journal of Applied Polymer Science, 2013, 127, 4947-4956.	1.3	33
32	Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents. Materials, 2016, 9, 473.	1.3	33
33	Reactively extruded ecocomposites based on poly(lactic acid)/bisphenol A polycarbonate blends reinforced with regenerated cellulose microfibers. Composites Science and Technology, 2017, 139, 127-137.	3.8	31
34	Thermal Properties of Plasticized Poly (Lactic Acid) (PLA) Containing Nucleating Agent. International Journal of Chemical Engineering and Applications (IJCEA), 2016, 7, 85-88.	0.3	30
35	Expanding the application field of postâ€consumer poly(ethylene terephthalate) through structural modification by reactive blending. Journal of Applied Polymer Science, 2014, 131, .	1.3	27
36	Skin-Compatible Biobased Beauty Masks Prepared by Extrusion. Journal of Functional Biomaterials, 2020, 11, 23.	1.8	27

#	Article	IF	CITATIONS
37	Trends in Surgical and Beauty Masks for a Cleaner Environment. Cosmetics, 2020, 7, 68.	1.5	26
38	Chitin and lignin to produce biocompatible tissues. , 2018, 01, .		26
39	Improved Impact Properties in Poly(lactic acid) (PLA) Blends Containing Cellulose Acetate (CA) Prepared by Reactive Extrusion. Materials, 2019, 12, 270.	1.3	25
40	Preparation of Innovative Skin Compatible Films to Release Polysaccharides for Biobased Beauty Masks. Cosmetics, 2018, 5, 70.	1.5	22
41	Intelligent non-colorimetric indicators for the perishable supply chain by non-wovens with photo-programmed thermal response. Nature Communications, 2020, 11, 5991.	5.8	21
42	Preliminary Studies on an Innovative Bioactive Skin Soluble Beauty Mask Made by Combining Electrospinning and Dry Powder Impregnation. Cosmetics, 2020, 7, 96.	1.5	21
43	Influence of compatibilizer precursor structure on the phase distribution of low density poly(ethylene) in a poly(ethylene terephthalate) matrix. Polymer Engineering and Science, 2008, 48, 1424-1433.	1.5	20
44	Biobased and Eco-Compatible Beauty Films Coated with Chitin Nanofibrils, Nanolignin and Vitamin E. Cosmetics, 2021, 8, 27.	1.5	18
45	Effect of Potato Pulp Filler on the Mechanical Properties and Water Vapor Transmission Rate of Thermoplastic WPI/PBS Blends. Polymer-Plastics Technology and Engineering, 2016, 55, 510-517.	1.9	17
46	Antibacterial LDPE-based nanocomposites with salicylic and rosmarinic acid-modified layered double hydroxides. Applied Clay Science, 2021, 214, 106276.	2.6	17
47	Liquid and Solid Functional Bio-Based Coatings. Polymers, 2021, 13, 3640.	2.0	17
48	Chain Extension of Poly(Lactic Acid) (PLA)–Based Blends and Composites Containing Bran with Biobased Compounds for Controlling Their Processability and Recyclability. Polymers, 2021, 13, 3050.	2.0	16
49	Pore Size Distribution and Blend Composition Affect In Vitro Prevascularized Bone Matrix Formation on Poly(Vinyl Alcohol)/Gelatin Sponges. Macromolecular Materials and Engineering, 2017, 302, 1700300.	1.7	14
50	Modification of PLA-Based Films by Grafting or Coating. Journal of Functional Biomaterials, 2020, 11, 30.	1.8	14
51	Electrosprayed Shrimp and Mushroom Nanochitins on Cellulose Tissue for Skin Contact Application. Molecules, 2021, 26, 4374.	1.7	14
52	Fracture behavior and mechanical, thermal, and rheological properties of biodegradable films extruded by flat die and calender. Journal of Polymer Science, 2020, 58, 3264-3282.	2.0	13
53	Preparation and Compatibilization of PBS/Whey Protein Isolate Based Blends. Molecules, 2020, 25, 3313.	1.7	13
54	Immunomodulatory Activity of Electrospun Polyhydroxyalkanoate Fiber Scaffolds Incorporating Olive Leaf Extract. Applied Sciences (Switzerland), 2021, 11, 4006.	1.3	13

#	Article	IF	CITATIONS
55	Volume Change during Creep and Micromechanical Deformation Processes in PLA–PBSA Binary Blends. Polymers, 2021, 13, 2379.	2.0	13
56	Comparative study about preparation of poly(lactide)/Organophilic montmorillonites nanocomposites through melt blending or ring opening polymerization methods. Journal of Applied Polymer Science, 2012, 125, E413.	1.3	12
57	Compatibilization of Poly(Lactic Acid) (PLA)/Plasticized Cellulose Acetate Extruded Blends through the Addition of Reactively Extruded Comb Copolymers. Molecules, 2021, 26, 2006.	1.7	12
58	Chitin nanofibrils in renewable materials for packaging and personal care applications. Advanced Materials Letters, 2019, 10, 425-430.	0.3	12
59	Chitin Nanofibril-Nanolignin Complexes as Carriers of Functional Molecules for Skin Contact Applications. Nanomaterials, 2022, 12, 1295.	1.9	12
60	Preparation of Water Suspensions of Nanocalcite for Cultural Heritage Applications. Nanomaterials, 2018, 8, 254.	1.9	11
61	Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. Applied Sciences (Switzerland), 2021, 11, 9249.	1.3	10
62	Analysis, Development, and Scaling-Up of Poly(lactic acid) (PLA) Biocomposites with Hazelnuts Shell Powder (HSP). Polymers, 2021, 13, 4080.	2.0	9
63	Essential Work of Fracture and Evaluation of the Interfacial Adhesion of Plasticized PLA/PBSA Blends with the Addition of Wheat Bran By-Product. Polymers, 2022, 14, 615.	2.0	9
64	Inspecting adhesion and cohesion of protectives and consolidants in sandstones of architectural heritage by X-ray microscopy methods. Materials Characterization, 2019, 156, 109853.	1.9	8
65	Smart and Sustainable Hair Products Based on Chitin-Derived Compounds. Cosmetics, 2021, 8, 20.	1.5	8
66	Effect of a Bio-Based Dispersing Aid (Einar® 101) on PLA-Arbocel® Biocomposites: Evaluation of the Interfacial Shear Stress on the Final Mechanical Properties. Biomolecules, 2020, 10, 1549.	1.8	7
67	Biobased Materials for Skin-Contact Products Promoted by POLYBIOSKIN Project. Journal of Functional Biomaterials, 2020, 11, 77.	1.8	7
68	Effect of ageing time on mechanical properties of plasticized poly(hydroxybutyrate) (PHB). AIP Conference Proceedings, 2014, , .	0.3	6
69	Overview of Agro-Food Waste and By-Products Valorization for Polymer Synthesis and Modification for Bio-Composite Production. Proceedings (mdpi), 2020, 69, .	0.2	5
70	Fully Biobased Reactive Extrusion of Biocomposites Based on PLA Blends and Hazelnut Shell Powders (HSP). Chemistry, 2021, 3, 1464-1480.	0.9	4
71	Influence of Functional Bio-Based Coatings Including Chitin Nanofibrils or Polyphenols on Mechanical Properties of Paper Tissues. Polymers, 2022, 14, 2274.	2.0	4
72	Water-free, Proton-Conducting Hybrid Materials for Elevated-Temperature Electrochemical Systems. Journal of Physical Chemistry C, 2017, 121, 17129-17136.	1.5	2

#	Article	IF	CITATIONS
73	Effect of different nucleating agent on crystallinity and properties of polylactic acid. AIP Conference Proceedings, 2018, , .	0.3	1
74	Withdrawal Notice: Beauty and Wellness Turn Towards a Green Economy. Current Cosmetic Science, 2021, 01, .	0.1	0