Pavel A Pevzner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2594793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 2012, 19, 455-477.	0.8	20,193
2	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
3	metaSPAdes: a new versatile metagenomic assembler. Genome Research, 2017, 27, 824-834.	2.4	2,779
4	Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology, 2019, 37, 540-546.	9.4	2,730
5	Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products. Journal of Computational Biology, 2013, 20, 714-737.	0.8	1,235
6	The complete sequence of a human genome. Science, 2022, 376, 44-53.	6.0	1,222
7	MS-GF+ makes progress towards a universal database search tool for proteomics. Nature Communications, 2014, 5, 5277.	5.8	945
8	PepNovo:  De Novo Peptide Sequencing via Probabilistic Network Modeling. Analytical Chemistry, 2005, 77, 964-973.	3.2	615
9	American Gut: an Open Platform for Citizen Science Microbiome Research. MSystems, 2018, 3, .	1.7	604
10	Telomere-to-telomere assembly of a complete human X chromosome. Nature, 2020, 585, 79-84.	13.7	549
11	InsPecT:Â Identification of Posttranslationally Modified Peptides from Tandem Mass Spectra. Analytical Chemistry, 2005, 77, 4626-4639.	3.2	546
12	De NovoPeptide Sequencing via Tandem Mass Spectrometry. Journal of Computational Biology, 1999, 6, 327-342.	0.8	529
13	How to apply de Bruijn graphs to genome assembly. Nature Biotechnology, 2011, 29, 987-991.	9.4	470
14	plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics, 2016, 32, 3380-3387.	1.8	468
15	<scp>hybrid</scp> SPA <scp>des</scp> : an algorithm for hybrid assembly of short and long reads. Bioinformatics, 2016, 32, 1009-1015.	1.8	463
16	metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods, 2020, 17, 1103-1110.	9.0	430
17	Spectral Probabilities and Generating Functions of Tandem Mass Spectra: A Strike against Decoy Databases. Journal of Proteome Research, 2008, 7, 3354-3363.	1.8	426
18	Short read fragment assembly of bacterial genomes. Genome Research, 2008, 18, 324-330.	2.4	371

#	Article	IF	CITATIONS
19	Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7672-7677.	3.3	322
20	Genome Rearrangements in Mammalian Evolution: Lessons From Human and Mouse Genomes. Genome Research, 2003, 13, 37-45.	2.4	302
21	Identification of post-translational modifications by blind search of mass spectra. Nature Biotechnology, 2005, 23, 1562-1567.	9.4	247
22	l-Tuple DNA Sequencing: Computer Analysis. Journal of Biomolecular Structure and Dynamics, 1989, 7, 63-73.	2.0	243
23	Clustering Millions of Tandem Mass Spectra. Journal of Proteome Research, 2008, 7, 113-122.	1.8	230
24	Assembly of long error-prone reads using de Bruijn graphs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8396-E8405.	3.3	230
25	De novo fragment assembly with short mate-paired reads: Does the read length matter?. Genome Research, 2009, 19, 336-346.	2.4	220
26	Dereplication of microbial metabolites through database search of mass spectra. Nature Communications, 2018, 9, 4035.	5.8	220
27	Complete genomic and epigenetic maps of human centromeres. Science, 2022, 376, eabl4178.	6.0	204
28	De Novo Repeat Classification and Fragment Assembly. Genome Research, 2004, 14, 1786-1796.	2.4	195
29	Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nature Genetics, 2007, 39, 1361-1368.	9.4	192
30	Characterization of Cyanobacterial Hydrocarbon Composition and Distribution of Biosynthetic Pathways. PLoS ONE, 2014, 9, e85140.	1.1	190
31	Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Research, 2004, 14, 2245-2252.	2.4	184
32	Dereplication of peptidic natural products through database search of mass spectra. Nature Chemical Biology, 2017, 13, 30-37.	3.9	184
33	Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16286-16290.	3.3	179
34	Fragment assembly with short reads. Bioinformatics, 2004, 20, 2067-2074.	1.8	166
35	Protein identification by spectral networks analysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6140-6145.	3.3	157
36	<scp>Metaviral</scp> <scp>SPAdes</scp> : assembly of viruses from metagenomic data. Bioinformatics, 2020, 36, 4126-4129.	1.8	149

Pavel A Pevzner

#	Article	IF	CITATIONS
37	Automated Genome Mining of Ribosomal Peptide Natural Products. ACS Chemical Biology, 2014, 9, 1545-1551.	1.6	133
38	Mutation-Tolerant Protein Identification by Mass Spectrometry. Journal of Computational Biology, 2000, 7, 777-787.	0.8	128
39	Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology, 2008, 26, 1336-1338.	9.4	114
40	Plasmid detection and assembly in genomic and metagenomic data sets. Genome Research, 2019, 29, 961-968.	2.4	108
41	ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics, 2014, 30, i293-i301.	1.8	103
42	Thousands of previously unknown phages discovered in whole-community human gut metagenomes. Microbiome, 2021, 9, 78.	4.9	101
43	Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. Nature Biotechnology, 2022, 40, 711-719.	9.4	99
44	Fragment assembly with double-barreled data. Bioinformatics, 2001, 17, S225-S233.	1.8	97
45	Spectral archives: extending spectral libraries to analyze both identified and unidentified spectra. Nature Methods, 2011, 8, 587-591.	9.0	86
46	Dereplication and de novo sequencing of nonribosomal peptides. Nature Methods, 2009, 6, 596-599.	9.0	81
47	NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery. Journal of Natural Products, 2014, 77, 1902-1909.	1.5	81
48	Shotgun Protein Sequencing. Molecular and Cellular Proteomics, 2007, 6, 1123-1134.	2.5	80
49	Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nature Communications, 2021, 12, 1044.	5.8	80
50	DRIMM-Synteny: decomposing genomes into evolutionary conserved segments. Bioinformatics, 2010, 26, 2509-2516.	1.8	78
51	Computing Has Changed Biology—Biology Education Must Catch Up. Science, 2009, 325, 541-542.	6.0	76
52	Interpreting Top-Down Mass Spectra Using Spectral Alignment. Analytical Chemistry, 2008, 80, 2499-2505.	3.2	71
53	Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. Nature Microbiology, 2018, 3, 319-327.	5.9	71
54	Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. Genome Research, 2020, 30, 898-909.	2.4	68

#	Article	IF	CITATIONS
55	Comment on "Protein Sequences from Mastodon and <i>Tyrannosaurus rex</i> Revealed by Mass Spectrometry". Science, 2008, 321, 1040-1040.	6.0	62
56	Paired de Bruijn Graphs: A Novel Approach for Incorporating Mate Pair Information into Genome Assemblers. Journal of Computational Biology, 2011, 18, 1625-1634.	0.8	60
57	Dereplication, sequencing and identification of peptidic natural products: from genome mining to peptidogenomics to spectral networks. Natural Product Reports, 2016, 33, 73-86.	5.2	59
58	SEQuel: improving the accuracy of genome assemblies. Bioinformatics, 2012, 28, i188-i196.	1.8	56
59	BiosyntheticSPAdes: reconstructing biosynthetic gene clusters from assembly graphs. Genome Research, 2019, 29, 1352-1362.	2.4	55
60	Single-molecule protein identification by sub-nanopore sensors. PLoS Computational Biology, 2017, 13, e1005356.	1.5	52
61	Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field Orbitrap mass spectrometer. Journal of Proteomics, 2017, 159, 67-76.	1.2	47
62	Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads. Genome Biology, 2019, 20, 226.	3.8	47
63	MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities. Cell Systems, 2019, 9, 600-608.e4.	2.9	46
64	Automated assembly of centromeres from ultra-long error-prone reads. Nature Biotechnology, 2020, 38, 1309-1316.	9.4	45
65	Single Cells within the Puerto Rico Trench Suggest Hadal Adaptation of Microbial Lineages. Applied and Environmental Microbiology, 2015, 81, 8265-8276.	1.4	43
66	lgRepertoireConstructor: a novel algorithm for antibody repertoire construction and immunoproteogenomics analysis. Bioinformatics, 2015, 31, i53-i61.	1.8	42
67	Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads. Nature Biotechnology, 2022, 40, 1075-1081.	9.4	41
68	Assembling short reads from jumping libraries with large insert sizes. Bioinformatics, 2015, 31, 3262-3268.	1.8	40
69	TruSPAdes: barcode assembly of TruSeq synthetic long reads. Nature Methods, 2016, 13, 248-250.	9.0	40
70	TandemTools: mapping long reads and assessing/improving assembly quality in extra-long tandem repeats. Bioinformatics, 2020, 36, i75-i83.	1.8	40
71	Multiplex De Novo Sequencing of Peptide Antibiotics. Journal of Computational Biology, 2011, 18, 1371-1381.	0.8	39
72	Cycloquest: Identification of Cyclopeptides via Database Search of Their Mass Spectra against Genome Databases. Journal of Proteome Research, 2011, 10, 4505-4512.	1.8	38

#	Article	IF	CITATIONS
73	Detection and analysis of ancient segmental duplications in mammalian genomes. Genome Research, 2018, 28, 901-909.	2.4	38
74	Sequencing cyclic peptides by multistage mass spectrometry. Proteomics, 2011, 11, 3642-3650.	1.3	37
75	Reconstructing Antibody Repertoires from Error-Prone Immunosequencing Reads. Journal of Immunology, 2017, 199, 3369-3380.	0.4	37
76	Advanced Proteogenomic Analysis Reveals Multiple Peptide Mutations and Complex Immunoglobulin Peptides in Colon Cancer. Journal of Proteome Research, 2015, 14, 3555-3567.	1.8	36
77	Spatial Molecular Architecture of the Microbial Community of a <i>Peltigera</i> Lichen. MSystems, 2016, 1, .	1.7	36
78	A family of small, cyclic peptides buried in preproalbumin since the Eocene epoch. Plant Direct, 2018, 2, e00042.	0.8	32
79	De Novo Sequencing of Peptides from Top-Down Tandem Mass Spectra. Journal of Proteome Research, 2015, 14, 4450-4462.	1.8	31
80	Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nature Communications, 2021, 12, 3225.	5.8	31
81	De Novo Peptide Sequencing Reveals Many Cyclopeptides in the Human Gut and Other Environments. Cell Systems, 2020, 10, 99-108.e5.	2.9	28
82	The string decomposition problem and its applications to centromere analysis and assembly. Bioinformatics, 2020, 36, i93-i101.	1.8	28
83	Multi-spectra peptide sequencing and its applications to multistage mass spectrometry. Bioinformatics, 2008, 24, i416-i423.	1.8	25
84	How bioinformatics and open data can boost basic science in countries and universities with limited resources. Nature Biotechnology, 2019, 37, 324-326.	9.4	25
85	De novo Inference of Diversity Genes and Analysis of Non-canonical V(DD)J Recombination in Immunoglobulins. Frontiers in Immunology, 2019, 10, 987.	2.2	22
86	A New Approach to Evaluating Statistical Significance of Spectral Identifications. Journal of Proteome Research, 2013, 12, 1560-1568.	1.8	20
87	A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Marine Drugs, 2021, 19, 20.	2.2	19
88	De novo repeat classification and fragment assembly. , 2004, , .		16
89	V(DD)J recombination is an important and evolutionarily conserved mechanism for generating antibodies with unusually long CDR3s. Genome Research, 2020, 30, 1547-1558.	2.4	15
90	CentromereArchitect: inference and analysis of the architecture of centromeres. Bioinformatics, 2021, 37, i196-i204.	1.8	15

#	Article	IF	CITATIONS
91	Pathset Graphs: A Novel Approach for Comprehensive Utilization of Paired Reads in Genome Assembly. Journal of Computational Biology, 2013, 20, 359-371.	0.8	14
92	What is the difference between the breakpoint graph and the de Bruijn graph?. BMC Genomics, 2014, 15, S6.	1.2	14
93	Top-down analysis of protein samples by <i>de novo</i> sequencing techniques. Bioinformatics, 2016, 32, 2753-2759.	1.8	14
94	SpectroGene: A Tool for Proteogenomic Annotations Using Top-Down Spectra. Journal of Proteome Research, 2016, 15, 144-151.	1.8	14
95	GENOME-WIDE ANALYSIS OF BACTERIAL PROMOTER REGIONS. , 2002, , .		14
96	Paired de Bruijn Graphs: A Novel Approach for Incorporating Mate Pair Information into Genome Assemblers. Lecture Notes in Computer Science, 2011, , 238-251.	1.0	13
97	Trace Reconstruction Problems in Computational Biology. IEEE Transactions on Information Theory, 2021, 67, 3295-3314.	1.5	13
98	viralFlye: assembling viruses and identifying their hosts from long-read metagenomics data. Genome Biology, 2022, 23, 57.	3.8	11
99	Automated annotation of human centromeres with HORmon. Genome Research, 2022, , gr.276362.121.	2.4	11
100	Joint Analysis of Long and Short Reads Enables Accurate Estimates of Microbiome Complexity. Cell Systems, 2018, 7, 192-200.e3.	2.9	9
101	Automated analysis of immunosequencing datasets reveals novel immunoglobulin D genes across diverse species. PLoS Computational Biology, 2020, 16, e1007837.	1.5	9
102	The Antibody Repertoire of Colorectal Cancer. Molecular and Cellular Proteomics, 2017, 16, 2111-2124.	2.5	8
103	Immunoglobulin Classification Using the Colored Antibody Graph. Journal of Computational Biology, 2016, 23, 483-494.	0.8	7
104	Variations in antibody repertoires correlate with vaccine responses. Genome Research, 2022, 32, 791-804.	2.4	7
105	EULER-PCR: FINISHING EXPERIMENTS FOR REPEAT RESOLUTION. , 2001, , .		6
106	Pathset Graphs: A Novel Approach for Comprehensive Utilization of Paired Reads in Genome Assembly. Lecture Notes in Computer Science, 2012, , 200-212.	1.0	3
107	ORFograph: search for novel insecticidal protein genes in genomic and metagenomic assembly graphs. Microbiome, 2021, 9, 149.	4.9	3
108	MosaicFlye: Resolving Long Mosaic Repeats Using Long Reads. Lecture Notes in Computer Science, 2020, , 226-228.	1.0	1

#	Article	IF	CITATIONS
109	DNA STATISTICS, OVERLAPPING WORD PARADOX AND CONWAY EQUATION. , 1993, , .		0
110	Educating Biologists in the 21st Century: Bioinformatics Scientists versus Bioinformatics Technicians. , 2007, , 1-5.		0
111	Preface: 2 nd Satellite Meeting on Bioinformatics Education, Research in Computational Molecular Biology (RECOMB-BE 2010). Journal of Computational Biology, 2011, 18, 865-865.	0.8	0
112	Keynote: De novo sequencing of novel peptide antibiotics by tandem mass spectrometry. , 2012, , .		0
113	Are There Rearrangement Hotspots in the Human Genome?. PLoS Computational Biology, 2005, preprint, e209.	1.5	0
114	PROTEIN IDENTIFICATION VIA SPECTRAL NETWORKS ANALYSIS. , 2007, , .		0
115	Identifying protease cleavage sites by labelâ€free mass spectrometry. FASEB Journal, 2010, 24, 905.4.	0.2	0
116	Michael Waterman's Contributions to Computational Biology and Bioinformatics. Journal of Computational Biology, 0, , .	0.8	0