Hidenori Yahiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2593321/publications.pdf

Version: 2024-02-01

687363 330143 1,348 46 13 37 citations h-index g-index papers 48 48 48 1160 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A smart hydrogel carrier for silver nanoparticles: an improved recyclable catalyst with temperature-tuneable catalytic activity for alcohol and olefin oxidation. New Journal of Chemistry, 2022, 46, 13661-13677.	2.8	1
2	A robust polyfunctional Pd(II)-based magnetic amphiphilic nanocatalyst for the Suzuki–Miyaura coupling reaction. Scientific Reports, 2021, 11, 10239.	3.3	14
3	Catalytic oxidation of cyclic hydrocarbons with hydrogen peroxide using Fe complexes immobilized into montmorillonite. Catalysis Today, 2020, 352, 243-249.	4.4	1
4	PM oxidation over Ag-loaded perovskite-type oxide catalyst prepared by thermal decomposition of heteronuclear cyano-complex precursor. Catalysis Today, 2019, 332, 83-88.	4.4	3
5	Selective Oxidation of Thioanisole with Hydrogen Peroxide using Copper Complexes Encapsulated in Zeolite: Formation of a Thermally Stable and Reactive Copper Hydroperoxo Species. ACS Catalysis, 2018, 8, 2645-2650.	11.2	28
6	Agâ€nanoparticle embedded p(AA) hydrogel as an efficient green heterogeneous Nanoâ€catalyst for oxidation and reduction of organic compounds. Applied Organometallic Chemistry, 2018, 32, e3917.	3.5	18
7	Oxidation of cyclic hydrocarbons with hydrogen peroxide over iron complexes encapsulated in cation-exchanged zeolite. Catalysis Today, 2018, 303, 249-255.	4.4	8
8	Effect of Ni-loading on Sm-doped CeO ₂ anode for ammonia-fueled solid oxide fuel cell. Journal of the Ceramic Society of Japan, 2018, 126, 870-876.	1.1	12
9	Catalytic oxidation of benzene to phenol with hydrogen peroxide over Fe-terpyridine complexes supported on a cation exchange resin. Catalysis Communications, 2018, 116, 48-51.	3.3	5
10	Hydrogen permeation of BaCe _{0.80} Y _{0.20} O _{3−δ<td>t;&nd</td><td>ash;Gd<sι</td>}	t;&nd	a s h;Gd<sι
11	Anode-supported SOFC with thin film of proton-conducting BaCe _{0.8} Y _{0.2} O _{3−α} by electrophoretic deposition. Journal of the Ceramic Society of Japan, 2017, 125, 528-532.	1.1	9
12	Synthesis of perovskite-type oxide, LaFeO ₃ , from coordination polymer precursor, La[Fe(CN) ₆]·5H ₂ O. Journal of the Ceramic Society of Japan, 2016, 124, 7-12.	1.1	6
13	Cyanosilylation of Benzaldehyde with Trimethylsilyl cyanide over Zn-Sn Mixed Oxide Catalysts with Cubic-shaped Particles. Chemistry Letters, 2016, 45, 851-853.	1.3	3
14	Anodic performance of bilayer Ni-YSZ SOFC anodes formed by electrophoretic deposition. Journal of the Ceramic Society of Japan, 2015, 123, 235-238.	1.1	8
15	Effect of Water Added into Acetonitrile Solvent on Oxidation of Benzene with Hydrogen Peroxide over Iron Complexes Encapsulated in Zeolite. Chemistry Letters, 2015, 44, 1287-1288.	1.3	14
16	Cyanosilylation of benzaldehyde with TMSCN over perovskite-type oxide catalyst prepared by thermal decomposition of heteronuclear cyano complex precursors. Research on Chemical Intermediates, 2015, 41, 9551-9560.	2.7	13
17	Selective hydroxylation of cyclohexene over Fe-bipyridine complexes encapsulated into Y-type zeolite under environment-friendly conditions. Catalysis Today, 2015, 242, 261-267.	4.4	19
18	Influence of Ni Particle Size of SDC-Supported Anode on SOFC Performance. Materials Research Society Symposia Proceedings, 2014, 1676, 1.	0.1	0

#	Article	IF	Citations
19	Encapsulation of a binuclear manganese(II) complex with an amino acid-based ligand in zeolite Y and its catalytic epoxidation of cyclohexene. Transition Metal Chemistry, 2013, 38, 725-732.	1.4	12
20	Preparation of perovskite-type oxides from heterometal coordination polymer precursors linked by oxalate ligands, $\{Sm[M(ox) < sub > 3 < sub >] \hat{A} \cdot M + sub > 2 < sub > O \ < i > < sub > x < sub > < i > (M = Fe or Co). Journal of the Ceramic Society of Japan, 2013, 121, 84-88.$	1.1	1
21	Redox Properties of Fe-Promoted Cu/Al2O3 Catalysts Active for Water–Gas-Shift Reaction. Bulletin of the Chemical Society of Japan, 2012, 85, 511-516.	3.2	3
22	Selective Hydroxylation of Cyclohexene in Water as an Environment-friendly Solvent with Hydrogen Peroxide over Fe–Bipyridine Encapsulated in Y-type Zeolite. Chemistry Letters, 2012, 41, 713-715.	1.3	10
23	Synthesis of perovsite-type oxide catalysts, Ln(Fe, Co)O3 (Ln=La, Pr, Sm, Gd, Dy, Ho, Er, and Yb), from the thermal decomposition of the corresponding cyano complexes. Catalysis Today, 2012, 185, 230-235.	4.4	25
24	Elimination of H ₂ S Contained in Biogas by Metal-supported Active Carbon Adsorbents. Journal of the Japan Petroleum Institute, 2012, 55, 371-375.	0.6	0
25	Transformation of crystalline heteronuclear cyano complex to crystalline perovskite-type oxide by thermal decomposition. Catalysis Today, 2011, 175, 534-540.	4.4	12
26	Effect of pretreatment on carbon oxidation activity over copper ion-exchanged zeolite catalysts. Research on Chemical Intermediates, 2011, 37, 1157-1164.	2.7	1
27	Phase separation in the system with sodium silicate and sodium dodecyl sulfate under acidic conditions. Journal of the Ceramic Society of Japan, 2010, 118, 295-299.	1.1	1
28	Carbon Oxidation Reaction over Pt/Spherical Alumina Beads Catalysts Prepared by Sputtering Method. Topics in Catalysis, 2010, 53, 648-653.	2.8	4
29	CO Sensing Property of Transition Metal Oxide-Loaded SnO2 in a Reducing Atmosphere. Materials and Manufacturing Processes, 2010, 25, 350-353.	4.7	6
30	Improvement of the carbon oxidation activity of Cu-MFI by high-temperature pretreatment. Catalysis Communications, 2010, 11, 820-823.	3.3	3
31	Catalytic Property of Perovskite-Type Oxide Prepared by Thermal Decomposition of Heteronuclear Complex. Catalysis Surveys From Asia, 2009, 13, 221-228.	2.6	14
32	Catalytic Activity of Multi-metallic Perovskite-Type Oxide Prepared by the Thermal Decomposition of Heteronuclear Cyano Complex, Sm[Fe x Co1â°x (CN)6]·ÂnH2O. Topics in Catalysis, 2009, 52, 823-827.	2.8	21
33	Electrochemical Performances of Proton-Conducting SOFC with La-Sr-Fe-O Cathode Fabricated by Electrophoretic Deposition Techniques. Electrochemistry, 2009, 77, 143-145.	1.4	5
34	Promotion Effect of FeOx Addition on the Catalytic Activity of Supported Cu Catalysts for the Water–gas Shift Reaction. Catalysis Letters, 2008, 124, 233-237.	2.6	12
35	Effect of preparation routes on the catalytic activity over SmFeO3 oxide. Catalysis Today, 2008, 139, 125-129.	4.4	32
36	Potentiometric VOCs detection using 8YSZ based oxygen sensor. Journal of the Ceramic Society of Japan, 2008, 116, 777-780.	1.1	13

#	ARTICLE	IF	CITATION
37	Direct decomposition of nitrogen monoxide over Cu-MFI containing rare-earth elements: Sm and Gd as promoter. Catalysis Today, 2007, 126, 284-289.	4.4	13
38	Study on the Perovskite-type Oxide Cathodes in Proton-conducting SOFC. Materials Research Society Symposia Proceedings, 2006, 972, 1.	0.1	2
39	Nitric oxide adsorbed on zeolites: EPR studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 1267-1278.	3.9	29
40	Conductivity of zeolite/poly(tetrafluoroethylene) composite membrane in the presence of water vapor. Physical Chemistry Chemical Physics, 2003, 5, 620-623.	2.8	8
41	EPR study on NO introduced into lithium ion-exchanged LTA zeolites. Physical Chemistry Chemical Physics, 2002, 4, 4255-4259.	2.8	14
42	New Preparation Method of CdS Clusters Encapsulated in Y-Type Zeolites. Topics in Catalysis, 2002, 19, 193-195.	2.8	11
43	Association Forms of NO in Sodium Ion-Exchanged A-Type Zeolite:Â Temperature-Dependent Q-Band EPR Spectra. Journal of Physical Chemistry A, 2000, 104, 7950-7956.	2.5	33
44	Radiation-initiated graft polymerization of methylmethacrylate onto poly(tetrafluoroethylene): Characterization by1H-NMR. Journal of Applied Polymer Science, 1999, 74, 1386-1394.	2.6	1
45	Removal of nitrogen monoxide through a novel catalytic process. 1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites. The Journal of Physical Chemistry, 1991, 95, 3727-3730.	2.9	546
46	Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines. Applied Catalysis, 1991, 70, L1-L5.	0.8	349