Sidney A Lourenço

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2593095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceramics International, 2018, 44, 17290-17297.	4.8	81
2	A sensitive electrochemical sensor for Pb2+ ions based on ZnO nanofibers functionalized by L-cysteine. Journal of Molecular Liquids, 2020, 309, 113041.	4.9	45
3	Eu3+ photoluminescence enhancement due to thermal energy transfer in Eu2O3-doped SiO2–B2O3–PbO2 glasses system. Journal of Luminescence, 2011, 131, 850-855.	3.1	43
4	Mn concentration-dependent tuning of Mn ²⁺ d emission of Zn _{1â^x} Mn _x Te nanocrystals grown in a glass system. Physical Chemistry Chemical Physics, 2016, 18, 6069-6076.	2.8	31
5	Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix. Physical Chemistry Chemical Physics, 2012, 14, 3520.	2.8	29
6	Fluorescence quantum efficiency dependent on the concentration of Nd3+ doped phosphate glass. Chemical Physics Letters, 2012, 547, 38-41.	2.6	28
7	Magneto-optical properties of Cd1â^'xMnxS nanoparticles: influences of magnetic doping, Mn2+ ions localization, and quantum confinement. Physical Chemistry Chemical Physics, 2012, 14, 3248.	2.8	27
8	High Quantum Efficiency of Nd3+ Ions in a Phosphate Glass System using the Judd–Ofelt Theory. Brazilian Journal of Physics, 2013, 43, 230-238.	1.4	27
9	Carrier dynamics in the luminescent states of Cd _{1â^'x} Mn _x S nanoparticles: effects of temperature and x-concentration. Physical Chemistry Chemical Physics, 2012, 14, 1493-1501.	2.8	25
10	Growth kinetic on the optical properties of the Pb1â^'xMnxSe nanocrystals embedded in a glass matrix: thermal annealing and Mn2+ concentration. Physical Chemistry Chemical Physics, 2012, 14, 11040.	2.8	23
11	Concentration effect on the optical and magnetic properties of Co2+-doped Bi2S3 semimagnetic nanocrystals growth in glass matrix. Journal of Alloys and Compounds, 2018, 740, 974-979.	5.5	22
12	Influence of crystal field potential on the spectroscopic parameters of SiO2·B2O3·PbO glass doped with Nd2O3. Journal of Luminescence, 2011, 131, 1029-1036.	3.1	19
13	Fast and Low-Cost Synthesis of MoS2 Nanostructures on Paper Substrates for Near-Infrared Photodetectors. Applied Sciences (Switzerland), 2021, 11, 1234.	2.5	19
14	Structural and Optical Properties of Co ²⁺ -Doped PbSe Nanocrystals in Chalcogeneide Glass Matrix. Journal of Physical Chemistry C, 2015, 119, 13277-13282.	3.1	18
15	Tunable dual emission in visible and near-infrared spectra using Co ²⁺ -doped PbSe nanocrystals embedded in a chalcogenide glass matrix. Physical Chemistry Chemical Physics, 2016, 18, 23036-23043.	2.8	17
16	Luminescence in semimagnetic Pb1â^'Mn Se quantum dots grown in a glass host: Radiative and nonradiative emission processes. Chemical Physics Letters, 2013, 567, 23-26.	2.6	14
17	Effect of intermediate phases on the optical properties of PbI ₂ -rich CH ₃ NH ₃ PbI ₃ organic–inorganic hybrid perovskite. Physical Chemistry Chemical Physics, 2019, 21, 5253-5261.	2.8	14
18	Interdot carrier transfer in semimagnetic Pb1â^'xMnxSe nanocrystals embedded in oxide glass. Journal of Luminescence, 2010, 130, 2118-2122.	3.1	13

SIDNEY A LOURENçO

#	Article	IF	CITATIONS
19	Effect of Co co-doping on the optical properties of ZnTe:Mn nanocrystals. Physical Chemistry Chemical Physics, 2017, 19, 1158-1166.	2.8	11
20	Study of the optical and structural properties of the phosphate glass doped with CdS nanocrystals and co-doped with Nd3+ ions. Journal of Alloys and Compounds, 2021, 864, 158126.	5.5	11
21	Investigation of the physical properties of new PZT modified tellurium oxide (TeO2–B2O3–PbO2: TBP) glasses. Journal of Non-Crystalline Solids, 2010, 356, 2350-2354.	3.1	10
22	Effect of thermal annealing and sp-d exchange interaction in the optical properties of Mn2+-doped PbS nanocrystals embedded in a glass matrix. Journal of Luminescence, 2020, 222, 117144.	3.1	10
23	Incorporation of nanomaterials on the electrospun membrane process with potential use in water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126775.	4.7	10
24	Application of heterostructured CdS/ZnS quantum dots as luminescence down-shifting layer in P3HT:PCBM solar cells. Journal of Luminescence, 2021, 237, 118178.	3.1	10
25	Evidence of phase transition in Nd ³⁺ doped phosphate glass determined by thermal lens spectrometry. Physical Chemistry Chemical Physics, 2014, 16, 1583-1589.	2.8	9
26	Thermal window of constant luminescence quantum efficiency of Nd3+-doped phosphate glass. Journal of Luminescence, 2016, 180, 81-87.	3.1	8
27	Annealing time on carrier dynamics of ZnTe nanoparticles embedded in a near ultraviolet-transparent glass. Chemical Physics Letters, 2014, 599, 146-153.	2.6	7
28	Investigation of structural and optical properties of Pb1-xCoxS nanocrystals embedded in chalcogenide glass. Materials Chemistry and Physics, 2021, 269, 124766.	4.0	7
29	Characterization of digital textile printing and polymer blend (PFO-DMP:P3HT) for application in manufacture of organic diodes emitting white light – WOLEDS. Optical Materials, 2016, 62, 119-131.	3.6	6
30	Comparison of some theoretical models for fittings of the temperature dependence of the fundamental energy gap in GaAs. Brazilian Journal of Physics, 2010, 40, 15-21.	1.4	5
31	Efficient energy transfer mediated by intrinsic SiO2 nanocrystals in Eu+3-doped lead borosilicate glasses. Materials Chemistry and Physics, 2013, 139, 471-477.	4.0	5
32	Optical properties of Cr-doped Zn1â^'xMnxTe semimagnetic nanocrystals. Applied Physics Letters, 2018, 112, 063102.	3.3	5
33	Analysis of confinement potential fluctuation and band-gap renormalization effects on excitonic transition in GaAs/AlGaAs multiquantum wells grown on (100) and (311)A GaAs surfaces. Physica B: Condensed Matter, 2012, 407, 2131-2135.	2.7	4
34	Electrospun fibers of poly (vinyl alcohol): zinc acetate (PVA:AcZn) and further ZnO production: evaluation of PVA:AcZn ratio and annealing temperature effects on ZnO structure. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	4
35	Design experiment (parameters) applied to PEDOT: PSS/AgNW composite doped with EG for transparent conductive films. Journal of Molecular Liquids, 2021, 329, 115516.	4.9	3
36	Hydroxyapatite-coated liposomes for the controlled release of quantum dots and bupivacaine. Journal of Materials Research, 2021, 36, 3021-3030.	2.6	3

SIDNEY A LOURENçO

#	Article	IF	CITATIONS
37	Effects of temperature on transition energies of GaAsSbN/GaAs single quantum wells. Journal of Physics Condensed Matter, 2011, 23, 325801.	1.8	2
38	Surface Engineering in Alloyed CdSe/CdSexCdS1–x/CdS Core-Shell Colloidal Quantum Dots for Enhanced Optoelectronic Applications. Engineering Materials, 2020, , 189-205.	0.6	2
39	Effects of confinement on the electron–phonon interaction in Al _{0.18} Ga _{0.82} As/GaAs quantum wells. Journal of Physics Condensed Matter, 2009, 21, 155601.	1.8	1
40	Fluorescence quantum efficiency dependent on the concentration of Nd3+doped phosphate glass. , 2013, , .		0
41	Study of the thermal-optics parameters of Nd ³⁺ -doped phosphate glass as a function of temperature. Proceedings of SPIE, 2017, , .	0.8	0
42	Optical Properties of Semiconductor Nanocrystals into the Glass and Colloidal Environments for New Technological Applications. , 2017, , 155-175.		0