Oliver G G Knox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2593054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential accumulation of polycyclic aromatic hydrocarbons (PAHs) in three earthworm ecotypes: Implications for exposure assessment on historically contaminated soils. Environmental Advances, 2022, 7, 100175.	2.2	8
2	Means and ways of engaging, communicating and preserving local soil knowledge of smallholder farmers in Central Vietnam. Agriculture and Human Values, 2022, 39, 1039-1062.	1.7	3
3	Australian priorities for soil research and land manager engagement to improve sustainable soil management. Geoderma Regional, 2022, 29, e00509.	0.9	1
4	Modelling polycyclic aromatic hydrocarbon bioavailability in historically contaminated soils with six in-vitro chemical extractions and three earthworm ecotypes. Science of the Total Environment, 2022, 845, 157265.	3.9	3
5	Developing a multispecies weed competition model for high-yielding cotton. Weed Technology, 2021, 35, 202-209.	0.4	1
6	Contrasting agricultural management effects on soil organic carbon dynamics between topsoil and subsoil. Soil Research, 2021, 59, 24.	0.6	5
7	Spatial distribution of soil microbial activity and soil properties associated with Eucalyptus and Acacia plantings in NSW, Australia. Soil Research, 2021, 59, 609.	0.6	2
8	Distribution of subsoil microbial activity and biomass under Australian rotational cotton as influenced by system, crop status and season. Soil Research, 2021, 59, 547-558.	0.6	4
9	A Comparison of In-vitro PAH Bioaccessibility in Historically Contaminated Soils: Implications for Risk Management. Soil and Sediment Contamination, 2021, 30, 901-923.	1.1	3
10	Advancing prediction of polycyclic aromatic hydrocarbon bioaccumulation in plants for historically contaminated soils using Lolium multiflorum and simple chemical in-vitro methodologies. Science of the Total Environment, 2021, 772, 144783.	3.9	7
11	Local soil knowledge, sustainable agriculture and soil conservation in Central Vietnam. Geoderma Regional, 2021, 25, e00371.	0.9	8
12	Rhizosphere Legacy: Plant Root Interactions with the Soil and Its Biome. Rhizosphere Biology, 2021, , 129-153.	0.4	3
13	Clobal patterns and determinants of bacterial communities associated with ectomycorrhizal root tips of Alnus species. Soil Biology and Biochemistry, 2020, 148, 107923.	4.2	5
14	Determining the critical period for broadleaf weed control in high-yielding cotton using mungbean as a mimic weed. Weed Technology, 2020, 34, 689-698.	0.4	3
15	Subsoil Microbial Diversity and Stability in Rotational Cotton Systems. Soil Systems, 2020, 4, 44.	1.0	4
16	Border cell counts of Bollgard3 cotton and extracellular DNA expression levels. Euphytica, 2020, 216, 1.	0.6	3
17	Increasing soil organic carbon with maize in cotton-based cropping systems: Mechanisms and potential. Agriculture, Ecosystems and Environment, 2020, 299, 106985.	2.5	13
18	Determining the critical period for grass control in high-yielding cotton using Japanese millet as a mimic weed. Weed Technology, 2020, 34, 292-300.	0.4	5

OLIVER G G KNOX

#	Article	IF	CITATIONS
19	Insights, implications and challenges of studying local soil knowledge for sustainable land use: a critical review. Soil Research, 2020, 58, 219.	0.6	11
20	A Comparative Study of Field Nematode Communities over a Decade of Cotton Production in Australia. Agronomy, 2020, 10, 123.	1.3	1
21	Distribution and Restricted Vertical Movement of Nematodes in a Heavy Clay Soil. Agronomy, 2020, 10, 221.	1.3	2
22	Determining the critical period for weed control in high-yielding cotton using common sunflower as a mimic weed. Weed Technology, 2019, 33, 800-807.	0.4	11
23	The value of using mimic weeds in competition experiments in irrigated cotton. Weed Technology, 2019, 33, 601-609.	0.4	5
24	Coring lubricants can increase soil microbial activity in Vertisols. Journal of Microbiological Methods, 2019, 165, 105695.	0.7	3
25	Lessons from extension activity related to cotton rotation impacts on soil—A scientist's perspective. Soil Use and Management, 2019, 35, 141-149.	2.6	3
26	Understanding the impact of soil sodicity on mycorrhizal symbiosis: Some facts and gaps identified from cotton systems. Applied Soil Ecology, 2018, 126, 199-201.	2.1	9
27	Determination of Agricultural Impact on Soil Microbial Activity Using δ ¹⁸ O _P _{HCl} and Respiration Experiments. ACS Earth and Space Chemistry, 2018, 2, 683-691.	1.2	10
28	The impact of carbon addition on the organisation of rhizosheath of chickpea. Scientific Reports, 2018, 8, 18028.	1.6	13
29	Mycorrhizal colonisation of cotton in soils differing in sodicity. Pedobiologia, 2017, 61, 25-32.	0.5	6
30	Refinement of Passive Nematode Recovery from Cotton Growing High Clay Content Australian Vertisols. Communications in Soil Science and Plant Analysis, 2017, 48, 316-325.	0.6	2
31	Mycorrhizal contribution to phosphorus nutrition of cotton in low and highly sodic soils using dual isotope labelling (32P and 33P). Soil Biology and Biochemistry, 2017, 105, 37-44.	4.2	14
32	Mycorrhizal Symbioses of Cotton Grown on Sodic Soils: A Review from an Australian Perspective. Pedosphere, 2017, 27, 1015-1026.	2.1	7
33	Organisms with potential to assist in the control of Helicoverpa armigera in Australian cotton production systems. Crop and Pasture Science, 2016, 67, 1288.	0.7	1
34	Improving mycorrhizal colonisation of cotton in sodic soils. Rhizosphere, 2016, 2, 48-50.	1.4	6
35	Field evaluation of the effects of cotton variety and GM status on rhizosphere microbial diversity and function in Australian soils. Soil Research, 2014, 52, 203.	0.6	19
36	Investigating the Use of Silage Effluent to Improve Available Phosphorus from Gafsa Phosphate Rock. Communications in Soil Science and Plant Analysis, 2014, 45, 332-346.	0.6	1

OLIVER G G KNOX

#	Article	IF	CITATIONS
37	Cold Region Bioremediation of Hydrocarbon Contaminated Soils: Do We Know Enough?. Environmental Science & Technology, 2014, 48, 9980-9981.	4.6	15
38	Effects of microwaves on fungal pathogens of wheat seed. Crop Protection, 2013, 50, 12-16.	1.0	33
39	Capitalizing on deliberate, accidental, and GM-driven environmental change caused by crop modification. Journal of Experimental Botany, 2012, 63, 543-549.	2.4	4
40	The effect of co-composted cabbage and ground phosphate rock on the early growth and P uptake of oilseed rape and perennial ryegrass. Journal of Plant Nutrition and Soil Science, 2012, 175, 595-603.	1.1	8
41	Revisiting the Multiple Benefits of Historical Crop Rotations within Contemporary UK Agricultural Systems. Agroecology and Sustainable Food Systems, 2011, 35, 163-179.	0.9	15
42	Improving Bioavailability of Phosphate Rock for Organic Farming. Sustainable Agriculture Reviews, 2010, , 99-117.	0.6	10
43	Genetically modified cotton has no effect on arbuscular mycorrhizal colonisation of roots. Field Crops Research, 2008, 109, 57-60.	2.3	40
44	Improving Environmental Loading Assessments of Cry Protein from GM Plants Based on Experimentation in Cotton~!2008-09-12~!2008-11-15~!2008-12-05~!. Open Agriculture Journal, 2008, 2, 105-112.	0.3	9
45	Constitutive expression of Cry proteins in roots and border cells of transgenic cotton. Euphytica, 2007, 154, 83-90.	0.6	40
46	Observation ofTylenchorhynchus ewingiin association with cotton soils in Australia. Australasian Plant Disease Notes, 2006, 1, 47.	0.4	8
47	Influence of Nematodes on Resource Utilization by Bacteria—an in vitro Study. Microbial Ecology, 2006, 52, 444-450.	1.4	31
48	Helicotylenchus dihysterain Australian cotton roots. Australasian Plant Pathology, 2006, 35, 287.	0.5	10
49	Environmental impact of conventional and Bt insecticidal cotton expressing one and two Cry genes in Australia. Australian Journal of Agricultural Research, 2006, 57, 501.	1.5	44
50	Effect of Nematodes on Rhizosphere Colonization by Seed-Applied Bacteria. Applied and Environmental Microbiology, 2004, 70, 4666-4671.	1.4	46
51	Root Border Cells Take Up and Release Glucose-C. Annals of Botany, 2004, 93, 221-224.	1.4	30
52	Comparison of the spectral emission oflux recombinant and bioluminescent marine bacteria. Luminescence, 2003, 18, 145-155.	1.5	17
53	Nematode-enhanced microbial colonization of the wheat rhizosphere. FEMS Microbiology Letters, 2003, 225, 227-233.	0.7	38
54	The Reliability of Marker/Reporter Genes in Biocontrol Studies with B. subtilis. Biocontrol Science and Technology, 2002, 12, 637-641.	0.5	3

1

#	Article	IF	CITATIONS
55	Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Applied Soil Ecology, 2000, 15, 227-231.	2.1	25

56 The Application of lux -Gene Technology in the Control of Soil-Borne Diseases. , 1999, , 227-248.