
Lassi Rieppo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/259289/publications.pdf Version: 2024-02-01

LASSI RIEDDO

#	Article	IF	CITATIONS
1	Vibrational spectroscopy and its future applications in microbiology. Applied Spectroscopy Reviews, 2023, 58, 132-158.	3.4	4
2	Preprocessing Strategies for Sparse Infrared Spectroscopy: A Case Study on Cartilage Diagnostics. Molecules, 2022, 27, 873.	1.7	9
3	Optimization of measurement mode and sample processing for FTIR microspectroscopy in skin cancer research. Analyst, The, 2022, 147, 851-861.	1.7	4
4	MXeneâ€Polymer Hybrid for Highâ€Performance Gas Sensor Prepared by Microwaveâ€Assisted Inâ€5itu Intercalation. Advanced Materials Technologies, 2022, 7, .	3.0	14
5	Suitable Cathode NMP Replacement for Efficient Sustainable Printed Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4047-4058.	2.5	24
6	Preclassification of Broadband and Sparse Infrared Data by Multiplicative Signal Correction Approach. Molecules, 2022, 27, 2298.	1.7	1
7	Infrared spectroscopy is suitable for objective assessment of articular cartilage health. Osteoarthritis and Cartilage Open, 2022, 4, 100250.	0.9	2
8	The use of Fourier Transform Infrared (FTIR) spectroscopy in skin cancer research: a systematic review. Applied Spectroscopy Reviews, 2021, 56, 347-379.	3.4	9
9	Mineralization of dental tissues and caries lesions detailed with Raman microspectroscopic imaging. Analyst, The, 2021, 146, 1705-1713.	1.7	10
10	Infrared Fiber-Optic Spectroscopy Detects Bovine Articular Cartilage Degeneration. Cartilage, 2021, 13, 285S-294S.	1.4	10
11	Machine learning-augmented and microspectroscopy-informed multiparametric MRI for the non-invasive prediction of articular cartilage composition. Osteoarthritis and Cartilage, 2021, 29, 592-602.	0.6	12
12	Discrimination of melanoma cell lines with Fourier Transform Infrared (FTIR) spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119665.	2.0	7
13	Raman spectroscopy is sensitive to biochemical changes related to various cartilage injuries. Journal of Raman Spectroscopy, 2021, 52, 796-804.	1.2	12
14	Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: A pilot study. Acta Biomaterialia, 2020, 106, 145-155.	4.1	31
15	Near Infrared Spectroscopy Enables Differentiation of Mechanically and Enzymatically Induced Cartilage Injuries. Annals of Biomedical Engineering, 2020, 48, 2343-2353.	1.3	9
16	Effects of body mass on microstructural features of the osteochondral unit: A comparative analysis of 37 mammalian species. Bone, 2019, 127, 664-673.	1.4	10
17	Histochemical quantification of collagen content in articular cartilage. PLoS ONE, 2019, 14, e0224839.	1.1	44
18	Dataset on equine cartilage near infrared spectra, composition, and functional properties. Scientific Data, 2019, 6, 164.	2.4	6

Lassi Rieppo

#	Article	IF	CITATIONS
19	Near-infrared spectroscopy enables quantitative evaluation of human cartilage biomechanical properties during arthroscopy. Osteoarthritis and Cartilage, 2019, 27, 1235-1243.	0.6	25
20	Effect of centrifugal force on the development of articular neocartilage with bovine primary chondrocytes. Cell and Tissue Research, 2019, 375, 629-639.	1.5	0
21	3D morphometric analysis of calcified cartilage properties using micro-computed tomography. Osteoarthritis and Cartilage, 2019, 27, 172-180.	0.6	19
22	Critical-sized cartilage defects in the equine carpus. Connective Tissue Research, 2019, 60, 95-106.	1.1	12
23	Mid-infrared Spectroscopic Assessment of Cartilage Degeneration. , 2019, , .		0
24	Alterations in structural macromolecules and chondrocyte deformations in lapine retropatellar cartilage 9 weeks after anterior cruciate ligament transection. Journal of Orthopaedic Research, 2018, 36, 342-350.	1.2	9
25	Trabecular and subchondral bone development of the talus and distal tibia from foal to adult in the warmblood horse. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2018, 47, 206-215.	0.3	7
26	Quantitative susceptibility mapping of articular cartilage: Ex vivo findings at multiple orientations and following different degradation treatments. Magnetic Resonance in Medicine, 2018, 80, 2702-2716.	1.9	20
27	Accounting for spatial dependency in multivariate spectroscopic data. Chemometrics and Intelligent Laboratory Systems, 2018, 182, 166-171.	1.8	5
28	InÂvitro method for 3D morphometry of human articular cartilage chondrons based on micro-computed tomography. Osteoarthritis and Cartilage, 2018, 26, 1118-1126.	0.6	15
29	Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation. Scientific Reports, 2018, 8, 11357.	1.6	31
30	3D histopathological grading of osteochondral tissue using contrast-enhanced micro-computed tomography. Osteoarthritis and Cartilage, 2017, 25, 1680-1689.	0.6	21
31	Infrared microspectroscopic determination of collagen cross-links in articular cartilage. Journal of Biomedical Optics, 2017, 22, 035007.	1.4	6
32	Aggravated Postinfarct Heart Failure in Type 2 Diabetes Is Associated with Impaired Mitophagy and Exaggerated Inflammasome Activation. American Journal of Pathology, 2017, 187, 2659-2673.	1.9	48
33	Combination of optical coherence tomography and near infrared spectroscopy enhances determination of articular cartilage composition and structure. Scientific Reports, 2017, 7, 10586.	1.6	16
34	Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue. Scientific Reports, 2017, 7, 9606.	1.6	59
35	Determination of Extracellular Matrix Orientation of Articular Cartilage in 3D Using Micro-Computed Tomography. Osteoarthritis and Cartilage, 2017, 25, S254.	0.6	6
36	Optimal Regression Method for Near-Infrared Spectroscopic Evaluation of Articular Cartilage. Applied Spectroscopy, 2017, 71, 2253-2262.	1.2	14

LASSI RIEPPO

#	Article	IF	CITATIONS
37	Correlations of low-field NMR and variable-field NMR parameters with osteoarthritis in human articular cartilage under load. NMR in Biomedicine, 2017, 30, e3738.	1.6	9
38	Ultrasound Assessment of Human Meniscus. Ultrasound in Medicine and Biology, 2017, 43, 1753-1763.	0.7	4
39	Vibrational spectroscopy of articular cartilage. Applied Spectroscopy Reviews, 2017, 52, 249-266.	3.4	43
40	On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors. Scientific Reports, 2017, 7, 16594.	1.6	30
41	Effects of Articular Cartilage Constituents on Phosphotungstic Acid Enhanced Micro-Computed Tomography. PLoS ONE, 2017, 12, e0171075.	1.1	32
42	Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis. Applied Spectroscopy, 2016, 70, 1502-1510.	1.2	22
43	Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis. Scientific Reports, 2016, 6, 30008.	1.6	29
44	Optimal variable selection for Fourier transform infrared spectroscopic analysis of articular cartilage composition. Journal of Biomedical Optics, 2014, 19, 027003.	1.4	12
45	Cluster analysis of infrared spectra can differentiate intact and repaired articular cartilage. Osteoarthritis and Cartilage, 2013, 21, 462-469.	0.6	16
46	Infrared spectroscopic analysis of human and bovine articular cartilage proteoglycans using carbohydrate peak or its second derivative. Journal of Biomedical Optics, 2013, 18, 097006.	1.4	14
47	Prediction of compressive stiffness of articular cartilage using Fourier transform infrared spectroscopy. Journal of Biomechanics, 2013, 46, 1269-1275.	0.9	14
48	Contrast-Enhanced Micro–Computed Tomography in Evaluation of Spontaneous Repair of Equine Cartilage. Cartilage, 2012, 3, 235-244.	1.4	11
49	Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthritis and Cartilage, 2012, 20, 451-459.	0.6	184
50	Clustering of infrared spectra reveals histological zones in intact articular cartilage. Osteoarthritis and Cartilage, 2012, 20, 460-468.	0.6	18
51	Fourier Transform Infrared Spectroscopic Imaging and Multivariate Regression for Prediction of Proteoglycan Content of Articular Cartilage. PLoS ONE, 2012, 7, e32344.	1.1	39
52	Quantitative analysis of spatial proteoglycan content in articular cartilage with Fourier transform infrared imaging spectroscopy: Critical evaluation of analysis methods and specificity of the parameters. Microscopy Research and Technique, 2010, 73, 503-512.	1.2	39