Dana Zöllner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2592442/publications.pdf

Version: 2024-02-01

62 papers

1,186 citations

361296 20 h-index 434063 31 g-index

64 all docs

64
docs citations

times ranked

64

844 citing authors

#	Article	IF	CITATIONS
1	Three-dimensional normal grain growth: Monte Carlo Potts model simulation and analytical mean field theory. Scripta Materialia, 2006, 54, 1697-1702.	2.6	102
2	Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nature Materials, 2014, 13, 1102-1107.	13.3	72
3	A new point of view to determine the simulation temperature for the Potts model simulation of grain growth. Computational Materials Science, 2014, 86, 99-107.	1.4	62
4	A Potts model for junction limited grain growth. Computational Materials Science, 2011, 50, 2712-2719.	1.4	61
5	Control of biosilica morphology and mechanical performance by the conserved diatom gene Silicanin-1. Communications Biology, 2019, 2, 245.	2.0	51
6	Evolution equations and size distributions in nanocrystalline grain growth. Acta Materialia, 2011, 59, 4235-4243.	3.8	48
7	Effective growth law from three-dimensional grain growth simulations and new analytical grain size distribution. Scripta Materialia, 2006, 55, 461-464.	2.6	47
8	The envelope of size distributions in Ostwald ripening and grain growth. Acta Materialia, 2015, 88, 334-345.	3.8	42
9	Crystal growth kinetics as an architectural constraint on the evolution of molluscan shells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20388-20397.	3.3	39
10	Critical assessment 30: Grain growth – Unresolved issues. Materials Science and Technology, 2018, 34, 629-638.	0.8	36
11	Shedding some light on the early grain growth regime: About the effect of the initial microstructure on normal grain growth. Computational Materials Science, 2016, 113, 11-20.	1.4	28
12	Triple junction controlled grain growth in two-dimensional polycrystals and thin films: Self-similar growth laws and grain size distributions. Acta Materialia, 2014, 78, 114-124.	3.8	27
13	Materials Nanoarchitecturing via Cationâ€Mediated Protein Assembly: Making Limpet Teeth without Mineral. Advanced Materials, 2017, 29, 1701171.	11.1	27
14	Thermodynamic Aspects of Molluscan Shell Ultrastructural Morphogenesis. Advanced Functional Materials, 2017, 27, 1700506.	7.8	27
15	Biomineralization as a Paradigm of Directional Solidification: A Physical Model for Molluscan Shell Ultrastructural Morphogenesis. Advanced Materials, 2018, 30, e1803855.	11.1	27
16	On the Aboav–Weaire-law for junction limited grain growth in two dimensions. Computational Materials Science, 2013, 79, 759-762.	1.4	25
17	Investigating the von Neumann–Mullins relation under triple junction dragging. Acta Materialia, 2014, 70, 290-297.	3.8	23
18	Shaping highly regular glass architectures: A lesson from nature. Science Advances, 2017, 3, eaao2047.	4.7	23

#	Article	IF	Citations
19	Grain microstructure evolution in two-dimensional polycrystals under limited junction mobility. Scripta Materialia, 2012, 67, 41-44.	2.6	22
20	Grain microstructural evolution in 2D and 3D polycrystals under triple junction energy and mobility control. Computational Materials Science, 2016, 118, 325-337.	1,4	21
21	3D microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 035011.	0.8	21
22	Treating grain growth in thin films in three dimensions: A simulation study. Computational Materials Science, 2016, 125, 51-60.	1.4	17
23	Finite Element Analysis as a Method to Study Molluscan Shell Mechanics. Advanced Engineering Materials, 2018, 20, 1700939.	1.6	16
24	High-Throughput Segmentation of Tiled Biological Structures using Random-Walk Distance Transforms. Integrative and Comparative Biology, 2019, 59, 1700-1712.	0.9	16
25	Quantification of sheet nacre morphogenesis using X-ray nanotomography and deep learning. Journal of Structural Biology, 2020, 209, 107432.	1.3	16
26	Natural hybrid silica/protein superstructure at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31088-31093.	3.3	16
27	Dynamics of topological defects and structural synchronization in a forming periodic tissue. Nature Physics, 2021, 17, 410-415.	6.5	16
28	Morphological and textural evolution of the prismatic ultrastructure in mollusc shells: A comparative study of Pinnidae species. Acta Biomaterialia, 2019, 85, 272-281.	4.1	15
29	Topological changes in coarsening networks. Acta Materialia, 2017, 130, 147-154.	3.8	14
30	Crystallization by Amorphous Particle Attachment: On the Evolution of Texture. Advanced Materials, 2021, 33, e2101358.	11.1	13
31	Computer Simulations and Statistical Theory of Normal Grain Growth in Two and Three Dimensions. Materials Science Forum, 2004, 467-470, 1129-1136.	0.3	12
32	Morphogenesis of Biomineralized Calcitic Prismatic Tissue in Mollusca Fully Described by Classical Hierarchical Grain Boundary Motion. Crystal Growth and Design, 2017, 17, 5023-5027.	1.4	12
33	Modelling texture dependent grain growth by 2D Potts model simulations: A detailed analysis. Computational Materials Science, 2018, 155, 180-196.	1.4	12
34	Grain Size Distributions in Normal Grain Growth. Praktische Metallographie/Practical Metallography, 2010, 47, 618-639.	0.1	12
35	Topology of grain microstructures in two dimensions: a comparison of grain boundary and triple junction controlled grain growth. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 025028.	0.8	11
36	On the topology and size advantage of potentially abnormal grains. Computational Materials Science, 2018, 153, 382-391.	1.4	11

#	Article	IF	CITATIONS
37	Texture Controlled Grain Growth inÂThin Films Studied byÂ3D Potts Model. Advanced Theory and Simulations, 2019, 2, 1900064.	1.3	10
38	Phase-Field Modeling of Biomineralization in Mollusks and Corals: Microstructure vs Formation Mechanism. Jacs Au, 2021, 1, 1014-1033.	3.6	10
39	The Kinetics of Individual Grains in Polycrystalline Materials. Praktische Metallographie/Practical Metallography, 2012, 49, 428-445.	0.1	10
40	von Neumann–Mullins-type evolution equations for triple and quadruple junction controlled grain growth. Scripta Materialia, 2015, 109, 52-55.	2.6	9
41	Coarsening kinetics and the envelope theorem. Acta Materialia, 2016, 111, 210-219.	3.8	9
42	Influence of the local topology on the von Neumann-Mullins-relation. Computational Materials Science, 2017, 137, 67-74.	1.4	8
43	Static recrystallization and grain growth of accumulative roll bonded aluminum laminates. Journal of Materials Research, 2017, 32, 4503-4513.	1.2	8
44	Topological transitions: A topological random walk or pure geometric necessity?. Computational Materials Science, 2019, 166, 42-56.	1.4	7
45	A phenomenological approach to investigate nanocrystalline grain growth. Computational Materials Science, 2014, 92, 114-119.	1.4	6
46	Triple junction controlled grain growth in thin films. Computational Materials Science, 2021, 187, 110104.	1.4	6
47	Wet shells and dry tales: the evolutionary â€Just-So' stories behind the structure–function of biominerals. Journal of the Royal Society Interface, 2022, 19, .	1.5	6
48	Grain Size Distributions and Evolution Equations in Nanocrystalline Grain Growth. Materials Science Forum, 2012, 715-716, 806-811.	0.3	5
49	Biomineralized tissue formation as an archetype of ideal grain growth. Materials Horizons, 2019, 6, 751-757.	6.4	5
50	The role of mural mechanics on cephalopod palaeoecology. Journal of the Royal Society Interface, 2020, 17, 20200009.	1.5	5
51	Topological evolution of thin films during grain growth. Computational Materials Science, 2021, 200, 110803.	1.4	5
52	Self-Similarity as a Feature of Nanocrystalline Grain Growth. Materials Science Forum, 2013, 753, 349-352.	0.3	4
53	Studying the influence of triple junction energy and mobility on annealing processes. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012061.	0.3	4
54	Influence of subgrain boundaries on coarsening of grain structures. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012049.	0.3	4

#	ARTICLE	IF	CITATION
55	Growth History of Individual Grains in Polycrystals: Theoretical Model and Simulation Studies. Materials Science Forum, 2012, 715-716, 877-882.	0.3	3
56	Serial sectioning of grain microstructures under junction control: An old problem in a new guise. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012080.	0.3	3
57	Grain Growth., 2016, , .		3
58	Abnormal grain growth in thin wires of commercially pure iron with anisotropic microstructure. Journal of Materials Research and Technology, 2020, 9, 11099-11110.	2.6	3
59	Impact of a strong temperature gradient on grain growth in films. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 025010.	0.8	3
60	Untangling the mechanisms of lattice distortions in biogenic crystals across scales. Advanced Materials, 2022, , 2200690.	11.1	3
61	Topology Based Growth Law and New Analytical Grain Size Distribution Function of 3D Grain Growth. Materials Science Forum, 2007, 558-559, 1183-1188.	0.3	1
62	Potts Model Simulation of Grain Boundary Junction Limited Grain Growth. Materials Science Forum, 2012, 715-716, 623-628.	0.3	1