Wolfgang S Bacsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2592417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties. Science, 1995, 268, 845-847.	6.0	706
2	High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chemical Physics Letters, 2000, 323, 566-571.	1.2	186
3	Surface-enhanced Raman scattering and photoemission ofC60on noble-metal surfaces. Physical Review B, 1992, 46, 7873-7877.	1.1	158
4	High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes. Physical Review B, 1994, 50, 15473-15476.	1.1	151
5	Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale, 2017, 9, 11929-11938.	2.8	126
6	Raman scattering of laser-deposited amorphous carbon. Physical Review B, 1993, 47, 10931-10934.	1.1	124
7	Magnetic anisotropies of aligned carbon nanotubes. Physical Review B, 1995, 52, R6963-R6966.	1.1	123
8	The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties. Carbon, 2013, 58, 185-197.	5.4	105
9	Raman spectroscopy of closed-shell carbon particles. Chemical Physics Letters, 1993, 211, 346-352.	1.2	103
10	Hall effect and magnetoresistance of carbon nanotube films. Physical Review B, 1997, 55, 6704-6707.	1.1	87
11	Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes. Solid State Communications, 1996, 99, 513-517.	0.9	75
12	CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. Journal of Materials Chemistry, 2004, 14, 646.	6.7	75
13	Synthesis and Structure–Property Correlation in Shapeâ€Controlled ZnO Nanoparticles Prepared by Chemical Vapor Synthesis and their Application in Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2009, 19, 875-886.	7.8	67
14	Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017, 29, 4546-4556.	3.2	63
15	Electronic structure of YbN. Physical Review B, 1990, 42, 530-539.	1.1	56
16	Controlled laser heating of carbon nanotubes. Applied Physics Letters, 2006, 88, 173113.	1.5	47
17	Bilayer interference enhanced Raman spectroscopy. Applied Physics Letters, 1992, 61, 19-21.	1.5	44
18	Raman Spectral Band Oscillations in Large Graphene Bubbles. Physical Review Letters, 2018, 120, 186104.	2.9	43

WOLFGANG S BACSA

#	Article	IF	CITATIONS
19	Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapour deposition and their characterisation. Surface and Coatings Technology, 2007, 201, 9200-9204.	2.2	33
20	ESR study of potassium-doped aligned carbon nanotubes. Physical Review B, 1996, 53, 13996-13999.	1.1	32
21	Few layer graphene synthesis on transition metal ferrite catalysts. Carbon, 2015, 89, 350-360.	5.4	32
22	Narrow diameter double-wall carbon nanotubes: synthesis, electron microscopy and inelastic light scattering. New Journal of Physics, 2003, 5, 131-131.	1.2	30
23	Electrical conductivity and Raman imaging of double wall carbon nanotubes in a polymer matrix. Composites Science and Technology, 2011, 71, 1326-1330.	3.8	29
24	RamanGband in double-wall carbon nanotubes combiningpdoping and high pressure. Physical Review B, 2008, 78, .	1.1	27
25	Birch-Type Hydrogenation of Few-Layer Graphenes: Products and Mechanistic Implications. Journal of the American Chemical Society, 2016, 138, 14980-14986.	6.6	27
26	Sodide and Organic Halides Effect Covalent Functionalization of Single-Layer and Bilayer Graphene. Journal of the American Chemical Society, 2017, 139, 4202-4210.	6.6	27
27	strained-layer superlattices on Si(100), (100) and Si1â^'xGex/Si(100). Superlattices and Microstructures, 1989, 5, 71-77.	1.4	26
28	Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites. Journal of Applied Physics, 2005, 97, 034303.	1.1	26
29	Introduction to Carbon Nanotubes. , 2010, , 47-118.		26
30	Introduction to Carbon Nanotubes. , 2007, , 43-112.		25
31	Blue organic light emitting diodes based on bicarbazyle derivates: Device stability and multilayer configuration. Journal of Applied Physics, 1998, 84, 5733-5738.	1.1	24
32	Charge transfer between carbon nanotubes and sulfuric acid as determined by Raman spectroscopy. Physical Review B, 2012, 85, .	1.1	24
33	Influence of nitrogen doping on the radial breathing mode in carbon nanotubes. Physical Review B, 2009, 79, .	1.1	22
34	Synthesis and structure of ruthenium-fullerides. RSC Advances, 2016, 6, 69135-69148.	1.7	22
35	Relating elasticity and graphene folding conformation. RSC Advances, 2015, 5, 57515-57520.	1.7	20
36	Chemoselective reduction of quinoline over Rh–C ₆₀ nanocatalysts. Catalysis Science and Technology, 2019, 9, 6884-6898.	2.1	16

WOLFGANG S BACSA

#	Article	IF	CITATIONS
37	Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3360-3366.	0.7	14
38	Optimizing metal-support interphase for efficient fuel cell oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 2020, 561, 439-448.	5.0	13
39	The effect of twin screw extrusion on structural, electrical, and rheological properties in carbon nanotube polyâ€etherâ€etherâ€ketone nanocomposites. Journal of Applied Polymer Science, 2013, 129, 2527-2535.	1.3	12
40	Inelastic light scattering from strained-layer superlattices. Superlattices and Microstructures, 1988, 4, 717-721.	1.4	11
41	Microstructural properties of silicon powder produced in a low pressure silane discharge. Journal of Applied Physics, 1995, 77, 3729-3733.	1.1	11
42	Interference scanning optical probe microscopy. Applied Physics Letters, 1997, 70, 3507-3509.	1.5	11
43	Inelastic light scattering of hydrogen containing open-cage fullerene ATOCF. Physica Status Solidi (B): Basic Research, 2005, 242, R106-R108.	0.7	11
44	Tunable Resonant Raman Scattering From Singly Resonant Single Wall Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1083-1090.	1.9	11
45	Photon-induced intermolecular coupling in ultrathinC60films. Physical Review B, 1994, 49, 14750-14753.	1.1	9
46	Anisotropic electron-phonon coupling inα′â^'NaV2O5. Physical Review B, 2000, 61, R14885-R14888.	1.1	9
47	Ultraviolet photon absorption in single- and double-wall carbon nanotubes and peapods: Heating-induced phonon line broadening, wall coupling, and transformation. Physical Review B, 2007, 76, .	1.1	9
48	Uniform dispersion of nanotubes in thermoplastic polymer through thermal annealing. Carbon, 2013, 53, 399-402.	5.4	8
49	Sizeâ€controlled grapheneâ€based materials prepared by annealing of pitchâ€based cokes: G band phonon line broadening effects due to high pressure, crystallite size, and merging with D′ band. Journal of Raman Spectroscopy, 2019, 50, 1861-1866.	1.2	8
50	Raman <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>G</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>D</mml:mi>band in strongly photoexcited carbon nanotubes.</mml:math 	1.1	7
51	Physical Review B, 2009, 79, . Optical Interference Substrates for Nanoparticles and Two-Dimensional Materials. Nanomaterials and Nanotechnology, 2013, 3, 22.	1.2	7
52	Spectroscopic Properties Unique to Nano-Emitters. Nano Letters, 2008, 8, 4330-4334.	4.5	6
53	Silicon heteroepitaxy: interface structure and physical properties. Journal of Crystal Growth, 1991, 111, 889-896.	0.7	5
54	Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite. Journal of Applied Physics, 2014, 115, .	1.1	5

WOLFGANG S BACSA

#	Article	IF	CITATIONS
55	Confined phonons in strained short-period (001) Si/Ge superlattices. Thin Solid Films, 1989, 183, 65-70.	0.8	4
56	Raman spectroscopy with UV excitation on untwinned single crystals of YBa2Cu3O7–δ. Physica Status Solidi (B): Basic Research, 2004, 241, R63-R66.	0.7	4
57	Local optical field variation in the neighborhood of a semiconductor micrograting. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 893.	0.9	4
58	Interference Scanning Optical Probe Microscopy: Principles and Applications. Advances in Imaging and Electron Physics, 1999, 110, 1-19.	0.1	3
59	Comparative Raman spectroscopy of individual and bundled double wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 974-979.	0.7	3
60	Reversibility of defect formation during oxygenâ€assisted electronâ€beamâ€induced etching of graphene. Journal of Raman Spectroscopy, 2018, 49, 317-323.	1.2	3
61	Proton-Conducting Polymer Wrapped Cathode Catalyst for Enhancing Triple-Phase Boundaries in Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 627-638.	2.5	3
62	Thermal transfer in SWNTs and peapods under UV-irradiation. Physica Status Solidi (B): Basic Research, 2007, 244, 4064-4068.	0.7	2
63	Intense Raman bands and low luminescence of thin films of heme proteins on silica. Chemical Physics Letters, 2009, 478, 66-69.	1.2	2
64	<title>Interface structural characterization of strained-layer (001) SimGen superlattices by Raman spectroscopy</title> . , 1990, 1284, 195.		1
65	Laser Induced Modifications of Carbon Nanotube Composite Surfaces. Japanese Journal of Applied Physics, 2006, 45, 7776-7779.	0.8	1
66	Nanoscale needle shaped histidine and narrow vibrational Raman bands using visible excitation. Chemical Physics Letters, 2007, 439, 360-363.	1.2	1
67	Random resolution. Nature Nanotechnology, 2011, 6, 335-336.	15.6	1
68	Apparent Raman spectral shifts from nano-structured surfaces. Applied Physics Letters, 2012, 100, 173105.	1.5	1
69	Continuous approximation for interaction energy of adamantane encapsulated inside carbon nanotubes. Chemical Physics Letters, 2018, 693, 34-39.	1.2	1
70	<title>Coherent photon imaging in near-field optics</title> . , 1998, 3467, 18.		0
71	Double Wall Carbon Nanotubes as a Molecular Sensor in Polymer Composites. , 2010, , .		0
72	Embedded carbon nanotubes on surface of thermoplastic poly(ether ether ketone). Polymer, 2021, 226, 123807.	1.8	0

#	Article	IF	CITATIONS
73	Optical Interference Near Surfaces: Interference Substrates. SpringerBriefs in Physics, 2020, , 9-31.	0.2	0
74	Intermediate Field and a Single Point Scatterer on a Surface. SpringerBriefs in Physics, 2020, , 33-50.	0.2	0