
Joanna M Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2592245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global change pressures on soils from land use and management. Global Change Biology, 2016, 22, 1008-1028.	4.2	605
2	Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology, 2006, 12, 2044-2053.	4.2	438
3	The role of soil microbes in the global carbon cycle: tracking the belowâ€ground microbial processing of plantâ€derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 2014, 94, 2362-2371.	1.7	395
4	Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils. Global Change Biology, 2005, 11, 791-809.	4.2	246
5	Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biology, 2012, 18, 3317-3331.	4.2	221
6	The importance of the relationship between scale and process in understanding long-term DOC dynamics. Science of the Total Environment, 2010, 408, 2768-2775.	3.9	211
7	The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: A UK perspective. Science of the Total Environment, 2014, 473-474, 714-730.	3.9	166
8	Export of dissolved organic carbon from an upland peatland during storm events: Implications for flux estimates. Journal of Hydrology, 2007, 347, 438-447.	2.3	143
9	Carbon balance of UK peatlands: current state of knowledge and future research challenges. Climate Research, 2010, 45, 13-29.	0.4	134
10	Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review. Science of the Total Environment, 2018, 615, 857-874.	3.9	121
11	Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great Britain. Climate Research, 2010, 45, 151-162.	0.4	109
12	Suppression of Dissolved Organic Carbon by Sulfate Induced Acidification during Simulated Droughts. Environmental Science & Technology, 2006, 40, 1776-1783.	4.6	92
13	Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table drawâ€down. Global Change Biology, 2009, 15, 794-807.	4.2	79
14	Link between DOC in near surface peat and stream water in an upland catchment. Science of the Total Environment, 2008, 404, 308-315.	3.9	74
15	Assessing the vulnerability of blanket peat to climate change using an ensemble of statistical bioclimatic envelope models. Climate Research, 2010, 45, 131-150.	0.4	63
16	Buffering of recovery from acidification by organic acids. Science of the Total Environment, 2008, 404, 316-325.	3.9	56
17	Processes controlling DOC in pore water during simulated drought cycles in six different UK peats. Biogeochemistry, 2012, 109, 253-270.	1.7	54
18	Soil quality assessment based on carbon stratification index in different olive grove management practices in Mediterranean areas. Catena, 2016, 137, 449-458.	2.2	43

JOANNA M CLARK

#	Article	IF	CITATIONS
19	Comparing farmers' qualitative evaluation of soil fertility with quantitative soil fertility indicators in Kitui County, Kenya. Geoderma, 2019, 344, 153-163.	2.3	38
20	Evaluation of optical techniques for characterising soil organic matter quality in agricultural soils. Soil and Tillage Research, 2016, 155, 450-460.	2.6	34
21	Variation in the sensitivity of DOC release between different organic soils following H2SO4 and sea-salt additions. European Journal of Soil Science, 2011, 62, 267-284.	1.8	32
22	Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments. Environmental Pollution, 2013, 173, 270-277.	3.7	32
23	Modelling impacts of atmospheric deposition and temperature on long-term DOC trends. Science of the Total Environment, 2017, 578, 323-336.	3.9	31
24	The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources. Biogeosciences, 2017, 14, 2891-2902.	1.3	31
25	The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis. Environmental Pollution, 2008, 151, 110-120.	3.7	30
26	Sensitivity of peatland litter decomposition to changes in temperature and rainfall. Geoderma, 2018, 331, 29-37.	2.3	30
27	Managing peatland vegetation for drinking water treatment. Scientific Reports, 2016, 6, 36751.	1.6	29
28	Simulated climate change impact on summer dissolved organic carbon release from peat and surface vegetation: Implications for drinking water treatment. Water Research, 2014, 67, 66-76.	5.3	27
29	Preservation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds. Scientific Reports, 2019, 9, 18275.	1.6	26
30	Using Spectral Indices to Estimate Water Content and GPP in <i>Sphagnum</i> Moss and Other Peatland Vegetation. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4547-4557.	2.7	25
31	Effects of Land Management on Different Forms of Soil Carbon in Olive Groves in Mediterranean Areas. Land Degradation and Development, 2016, 27, 1186-1195.	1.8	24
32	Insights into redox cycling of sulfur and iron in peatlands using high-resolution diffusive equilibrium thin film (DET) gel probe sampling. Chemical Geology, 2007, 244, 409-420.	1.4	22
33	Impacts of pollution and climate change on ombrotrophic Sphagnum species in the UK: analysis of uncertainties in two empirical niche models. Climate Research, 2010, 45, 163-177.	0.4	20
34	A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years. Journal of Environmental Management, 2019, 246, 594-604.	3.8	17
35	Climate change and the British Uplands: evidence for decision-making. Climate Research, 2010, 45, 3-12.	0.4	16
36	Sources of dissolved organic carbon (DOC) in a mixed land use catchment (Exe, UK). Science of the Total Environment, 2019, 666, 165-175.	3.9	14

JOANNA M CLARK

#	Article	IF	CITATIONS
37	Soil organic matter storage in temperate lowland arable, grassland and woodland topsoil and subsoil. Soil Use and Management, 2022, 38, 1532-1546.	2.6	14
38	Model inter-comparison between statistical and dynamic model assessments of the long-term stability of blanket peat in Great Britain (1940–2099). Climate Research, 2010, 45, 227-248.	0.4	12
39	What is going wrong with community engagement? How flood communities and flood authorities construct engagement and partnership working. Environmental Science and Policy, 2018, 89, 109-115.	2.4	10
40	Changes in carbon flux and spectral reflectance of <i>Sphagnum</i> mosses as a result of simulated drought. Ecohydrology, 2019, 12, e2123.	1.1	10
41	Effects of acidity on dissolved organic carbon in organic soil extracts, pore water and surface litters. Science of the Total Environment, 2020, 703, 135585.	3.9	8
42	Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale. Science of the Total Environment, 2021, 766, 142613.	3.9	8
43	Going home for tea and medals: How members of the flood risk management authorities in England construct flooding and flood risk management. Journal of Flood Risk Management, 2022, 15, e12768.	1.6	8
44	Assessment of projected changes in upland environments using simple climatic indices. Climate Research, 2010, 45, 87-104.	0.4	7
45	Effects of acid sulphate on <scp>DOC</scp> release in mineral soils: the influence of <scp>SO₄²</scp> ^{â^`} retention and <scp>Al</scp> release. European Journal of Soil Science, 2013, 64, 537-544.	1.8	6
46	Spatial properties affecting the sensitivity of soil water dissolved organic carbon long-term median concentrations and trends. Science of the Total Environment, 2021, 780, 146670.	3.9	4