Qi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2591918/publications.pdf

Version: 2024-02-01

175 papers	4,188 citations	35 h-index	138484 58 g-index
puporo			5 maen
176 all docs	176 docs citations	176 times ranked	3112 citing authors

#	Article	IF	CITATIONS
1	High Sensitivity Coreless Fiber Surface Plasmon Resonance Sensor Based on Au Nano Biconical Particles. IEEE Sensors Journal, 2022, 22, 256-263.	4.7	7
2	High-performance plasmonic lab-on-fiber sensing system constructed by universal polymer assisted transfer technique. Nanotechnology, 2022, 33, 095502.	2.6	1
3	Highly Sensitive U-Shaped Optical Fiber Refractometer Based on Bi ₂ O ₂ Se-Assisted Surface Plasmon Resonance. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	4.7	8
4	An asymmetric grating refractive index sensor generating quasi-bound states in the continuum with high figure of merit and temperature self-compensation. Journal Physics D: Applied Physics, 2022, 55, 155103.	2.8	9
5	Research advances on surface plasmon resonance biosensors. Nanoscale, 2022, 14, 564-591.	5.6	83
6	Plasmonic crescent nanoarray-based surface lattice resonance sensor with a high figure of merit. Nanoscale, 2022, 14, 6144-6151.	5.6	9
7	Gold nanoparticles (AuNPs) and graphene oxide heterostructures with gold film coupling for an enhanced sensitivity surface plasmon resonance (SPR) fiber sensor. Instrumentation Science and Technology, 2022, 50, 530-542.	1.8	7
8	Highly sensitive gold-film surface plasmon resonance (SPR) sensor employing germanium selenide (GeSe) nanosheets. Instrumentation Science and Technology, 2022, 50, 577-588.	1.8	3
9	Sensitivity enhancement of fiber surface plasmon resonance (SPR) sensor based upon a gold film-hexagonal boron nitride—molybdenum disulfide structure. Instrumentation Science and Technology, 2022, 50, 589-603.	1.8	1
10	Reflective microfiber coupler with the optimal diameter for ultra-sensitive refractive index sensing. Instrumentation Science and Technology, 2021, 49, 182-200.	1.8	1
11	A Label-Free and Anti-Interference Dual-Channel SPR Fiber Optic Sensor With Self-Compensation for Biomarker Detection. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-7.	4.7	17
12	High-sensitivity fiber optic magnetic field sensor based on lossy mode resonance and hollow core-offset structure. Instrumentation Science and Technology, 2021, 49, 416-427.	1.8	5
13	A reflective optical fiber SPR sensor with surface modified hemoglobin for dissolved oxygen detection. AEJ - Alexandria Engineering Journal, 2021, 60, 4115-4120.	6.4	12
14	Characterization of the influence of the fiber diameter and sensing region length upon lossy mode resonance (LMR) fiber sensors. Instrumentation Science and Technology, 2020, 48, 1-21.	1.8	0
15	A D-Shaped Fiber Long-Range Surface Plasmon Resonance Sensor With High Q-Factor and Temperature Self-Compensation. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 2218-2224.	4.7	81
16	High quality factor D-type fiber surface plasmon resonance (SPR) sensor based on the modification of gold nanoshells. Instrumentation Science and Technology, 2020, 48, 63-74.	1.8	10
17	Discoveries and Explorations of Mode Splitting Phenomenon in Lossy Dielectric Waveguide. Plasmonics, 2020, 15, 481-487.	3.4	2
18	A dual channel self-compensation optical fiber biosensor based on coupling of surface plasmon polariton. Optics and Laser Technology, 2020, 124, 106002.	4.6	42

#	Article	IF	CITATIONS
19	Barium titanate film based fiber optic surface plasmon sensor with high sensitivity. Optics and Laser Technology, 2020, 124, 105899.	4.6	20
20	Lab-on-fiber: plasmonic nano-arrays for sensing. Nanoscale, 2020, 12, 7485-7499.	5.6	84
21	Lossy mode resonance generated by titanium dioxide nanoarray: a comprehensive theoretical research. Journal of Optics (United Kingdom), 2020, 22, 035004.	2.2	6
22	Enhanced sensitivity of bimetallic optical fiber SPR sensor based on MoS2 nanosheets. Optics and Lasers in Engineering, 2020, 128, 105997.	3.8	59
23	Characteristics of novel tail ring-shaped cascaded long period fiber grating sensor. Optical Fiber Technology, 2020, 55, 102134.	2.7	4
24	Recent progress and applications of optical microfiber and nanofiber devices. Instrumentation Science and Technology, 2019, 47, 117-139.	1.8	2
25	Triangular silver nanoparticle U-bent fiber sensor based on localized surface plasmon resonance. AIP Advances, 2019, 9, .	1.3	32
26	A Novel Fiber-Based Symmetrical Long-Range Surface Plasmon Resonance Biosensor With High Quality Factor and Temperature Self-Reference. IEEE Nanotechnology Magazine, 2019, 18, 1137-1143.	2.0	21
27	Simulation of a microstructure fiber pressure sensor based on lossy mode resonance. AIP Advances, 2019, 9, 095005.	1.3	13
28	Grafting of terbium(<scp>iii</scp>) complexes onto layered rare-earth hydroxide nanosheets to fabricate novel optical fiber temperature sensors. Nanoscale, 2019, 11, 2795-2804.	5.6	22
29	Lossy mode resonance-based fiber optic sensor using layer-by-layer SnO2 thin film and SnO2 nanoparticles. Applied Surface Science, 2019, 492, 374-381.	6.1	38
30	Theoretical analysis for the influence of the core radius on long period fiber grating sensors. Instrumentation Science and Technology, 2019, 47, 678-686.	1.8	1
31	Refractive index sensitivity enhancement of optical fiber SPR sensor utilizing layer of MWCNT/PtNPs composite. Optical Fiber Technology, 2019, 51, 118-124.	2.7	32
32	Sensitivity enhanced D-type large-core fiber SPR sensor based on Gold nanoparticle/Au film co-modification. Optics Communications, 2019, 450, 287-295.	2.1	64
33	Theoretical Analysis of a Novel Microstructure Fiber Sensor Based on Lossy Mode Resonance. Electronics (Switzerland), 2019, 8, 484.	3.1	17
34	A D-type fiber based symmetrical long-range surface plasmon resonance sensor with high quality factor. Measurement: Journal of the International Measurement Confederation, 2019, 140, 395-406.	5.0	25
35	A high sensitivity refractive index sensor based on three-level gradient structure S-tapered fiber mode-mode interferometer. Measurement: Journal of the International Measurement Confederation, 2019, 139, 49-60.	5.0	15
36	Cu/ITO-Coated Uncladded Fiber-Optic Biosensor Based on Surface Plasmon Resonance. IEEE Photonics Technology Letters, 2019, 31, 1159-1162.	2.5	22

#	Article	IF	Citations
37	Recent progress of dissolved carbon dioxide measurement technologies based on optical methods. Transactions of the Institute of Measurement and Control, 2019, 41, 2374-2385.	1.7	2
38	Mini review: Recent advances in long period fiber grating biological and chemical sensors. Instrumentation Science and Technology, 2019, 47, 140-169.	1.8	35
39	Ultrasensitive long-period gratings sensor works near dispersion turning point and mode transition region by optimally designing a photonic crystal fiber. Optics and Laser Technology, 2019, 112, 261-268.	4.6	10
40	Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 3350-3357.	4.7	129
41	Simultaneous measurement of refractive index and temperature based on a long period fiber grating inscribed in a photonic crystal fiber with an electric-arc discharge. Instrumentation Science and Technology, 2019, 47, 185-194.	1.8	12
42	Long-range surface plasmon resonance and its sensing applications: A review. Optics and Lasers in Engineering, 2019, 112, 103-118.	3.8	160
43	Sensing self-referenced fiber optic long-range surface plasmon resonance sensor based on electronic coupling between surface plasmon polaritons. Applied Optics, 2019, 58, 6329.	1.8	7
44	Theoretical and experimental research of lossy mode resonance-based high-sensitivity optical fiber refractive index sensors. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2069.	2.1	13
45	Polymer microfiber bridging Bi-tapered refractive index sensor based on evanescent field. Optics Communications, 2018, 414, 134-139.	2.1	3
46	Sensitivity-optimized long-period fiber gratings for refractive index and temperature sensing. Instrumentation Science and Technology, 2018, 46, 435-449.	1.8	10
47	Optical methods of antibiotic residues detections: A comprehensive review. Sensors and Actuators B: Chemical, 2018, 269, 238-256.	7.8	123
48	Optical fiber curvature sensor based on MMF-SCF-MMF structure. Optical Fiber Technology, 2018, 43, 1-5.	2.7	46
49	High sensitivity fibre surface plasmon resonance sensor based on silver mirror reaction. Transactions of the Institute of Measurement and Control, 2018, 40, 462-468.	1.7	4
50	Long-period fiber grating sensor induced by electric-arc discharge for dual-parameter measurement. Instrumentation Science and Technology, 2018, 46, 1-11.	1.8	13
51	A voltage measurement system based on fiber loop cavity ring-down technology using polymer dispersed liquid crystal film as sensing device. Transactions of the Institute of Measurement and Control, 2018, 40, 2303-2309.	1.7	4
52	Sensitivity-enhanced single-mode fiber-tapered hollow core fiber-single-mode fiber Mach–Zehnder interferometer for refractive index measurements. Instrumentation Science and Technology, 2018, 46, 28-42.	1.8	6
53	Graphene oxide-polymethylmethacrylate polymer waveguide device based on near infrared fingerprint spectrum for refractive index sensing. Transactions of the Institute of Measurement and Control, 2018, 40, 2607-2610.	1.7	3
54	Fabrication and sensing characterization of thermally induced long period fiber gratings in few mode fibers. Optik, 2018, 158, 71-77.	2.9	8

#	Article	IF	CITATIONS
55	A comprehensive review of lossy mode resonance-based fiber optic sensors. Optics and Lasers in Engineering, 2018, 100, 47-60.	3.8	151
56	A High-Birefringence Microfiber Sagnac-Interferometer Biosensor Based on the Vernier Effect. Sensors, 2018, 18, 4114.	3.8	32
57	Sensitivity-Enhanced Optical Fiber Biosensor Based on Coupling Effect Between SPR and LSPR. IEEE Sensors Journal, 2018, 18, 8303-8310.	4.7	61
58	Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers. Sensors and Actuators A: Physical, 2018, 278, 78-84.	4.1	15
59	Refractive index sensing characteristics of carbon nanotube-deposited photonic crystal fiber SPR sensor. Optical Fiber Technology, 2018, 43, 137-144.	2.7	42
60	An interferometric optical fiber biosensor with high sensitivity for IgG/anti-IgG immunosensing. Optics Communications, 2018, 426, 388-394.	2.1	40
61	Review of optical fiber bending/curvature sensor. Measurement: Journal of the International Measurement Confederation, 2018, 130, 161-176.	5.0	100
62	Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber. Sensors and Actuators B: Chemical, 2018, 275, 332-338.	7.8	95
63	Sensitivity enhanced SPR immunosensor based on graphene oxide and SPA co-modified photonic crystal fiber. Optics and Laser Technology, 2018, 107, 210-215.	4.6	53
64	Review on Optical Fiber Sensors Based on the Refractive Index Tunability of Ferrofluid. Journal of Lightwave Technology, 2017, 35, 3406-3412.	4.6	54
65	Theoretical investigation and optimization of fiber grating based slow light. Optics Communications, 2017, 395, 201-206.	2.1	1
66	A Sensitivity Enhanced Microdisplacement Sensing Method Improved Using Slow Light in Fiber Bragg Grating. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 122-130.	4.7	10
67	Comparative Analyses of Bi-Tapered Fiber Mach–Zehnder Interferometer for Refractive Index Sensing. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 2483-2489.	4.7	31
68	A high sensitivity refractive index sensor based on photonic crystal fibre Mach–Zehnder interferometer. Journal of Modern Optics, 2017, 64, 1639-1647.	1.3	10
69	Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating. Optical Fiber Technology, 2017, 34, 12-15.	2.7	46
70	Research and Application of Ice Thickness and Snow Depth Automatic Monitoring System. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 325-331.	4.7	10
71	Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber with Surface Plasmon Resonance. Plasmonics, 2017, 12, 1961-1965.	3.4	17
72	Simultaneous measurement of RI and temperature based on the combination of Sagnac loop mirror and balloon-like interferometer. Sensors and Actuators B: Chemical, 2017, 243, 800-805.	7.8	61

#	Article	IF	Citations
73	A partial discharge detection and localization system for high voltage cable based on long-tailed Sagnac interferometric fiber optic sensor. Microwave and Optical Technology Letters, 2017, 59, 2132-2136.	1.4	5
74	High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating. Instrumentation Science and Technology, 2017, 45, 181-189.	1.8	23
75	Fiber optic temperature sensor using the orbital angular momentum and gaussian beams. Instrumentation Science and Technology, 2017, 45, 123-136.	1.8	15
76	Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity—Towards Spectral Characteristics and Strain Sensing Technology. Sensors, 2017, 17, 1282.	3.8	3
77	A glucose concentration and temperature sensor based on long period fiber gratings induced by electric-arc discharge. , 2017, , .		0
78	A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure. Sensors, 2016, 16, 620.	3.8	81
79	Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology. Sensors, 2016, 16, 801.	3.8	5
80	High Sensitivity Balloon-Like Interferometer for Refractive Index and Temperature Measurement. IEEE Photonics Technology Letters, 2016, 28, 1485-1488.	2.5	42
81	Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer. IEEE Photonics Technology Letters, 2016, 28, 1839-1842.	2.5	17
82	Surface plasmon modes in single mode fiber coated with silver films. Optik, 2016, 127, 9269-9274.	2.9	0
83	Characterization of displacement sensing based on fiber optic microbend losses. Instrumentation Science and Technology, 2016, 44, 471-482.	1.8	8
84	Enhancement of RI Sensitivity Through Bending a Tapered-SMF-Based Balloon-Like Interferometer. Journal of Lightwave Technology, 2016, 34, 3293-3299.	4.6	32
85	Ag micro-spheres doped silica fiber used as a miniature refractive index sensor. Sensors and Actuators B: Chemical, 2016, 223, 241-245.	7.8	6
86	Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating. Optics Communications, 2016, 377, 89-93.	2.1	99
87	Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sensors and Actuators B: Chemical, 2016, 228, 665-672.	7.8	44
88	Characterization of whispering gallery mode slow light in microspheres. Instrumentation Science and Technology, 2016, 44, 458-470.	1.8	1
89	High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer. Sensors and Actuators B: Chemical, 2016, 225, 213-220.	7.8	117
90	Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology. Sensors and Actuators B: Chemical, 2016, 222, 159-165.	7.8	69

#	Article	IF	Citations
91	Refractive index sensor based on fiber loop ring-down spectroscopy. Instrumentation Science and Technology, 2016, 44, 241-248.	1.8	6
92	Characteristics of slow light from coupled fiber ring resonators. Instrumentation Science and Technology, 2016, 44, 115-126.	1.8	3
93	Low-cost and high-precision measurement of gas concentration by the way of wavelength modulation spectroscopy. Optik, 2015, 126, 4527-4530.	2.9	1
94	Novel Method of Detecting Movement of the Interference Fringes Using One-Dimensional PSD. Sensors, 2015, 15, 12857-12871.	3.8	2
95	Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation. Sensors, 2015, 15, 16632-16641.	3.8	9
96	Flexible NWs sensors in polymer, metal oxide and semiconductor materials for chemical and biological detection. Sensors and Actuators B: Chemical, 2015, 219, 65-82.	7.8	14
97	Novel Gas Concentration Measurements based on Harmonic Detection and a Broadband Light Source. Instrumentation Science and Technology, 2015, 43, 269-282.	1.8	0
98	Sensing Properties of Long Period Fiber Grating Coated by Silver Film. IEEE Photonics Technology Letters, 2015, 27, 46-49.	2.5	26
99	A Novel Long-Tail Fiber Current Sensor Based on Fiber Loop Ring-Down Spectroscopy and Fabry-Perot Cavity Filled With Magnetic Fluid. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 2005-2011.	4.7	35
100	Preparation and application of polymer nano-fiber doped with nano-particles. Optical Materials, 2015, 40, 49-56.	3.6	11
101	Review on the Optimization Methods of Slow Light in Photonic Crystal Waveguide. IEEE Nanotechnology Magazine, 2015, 14, 407-426.	2.0	59
102	Fiber ring resonator based slow-light and high sensitivity gas sensing technology. Sensors and Actuators B: Chemical, 2015, 214, 197-203.	7.8	5
103	Characterization of Temperature and Strain Using a Tilted Fiber Bragg Grating. Instrumentation Science and Technology, 2015, 43, 244-254.	1.8	5
104	SMF Taper Evanescent Field-Based RI Sensor Combined With Fiber Loop Ring Down Technology. IEEE Photonics Technology Letters, 2015, 27, 1802-1805.	2.5	18
105	Design and simulation of the angle-ended fiber integrated into optoelectronic tweezers chip. Optik, 2015, 126, 3240-3244.	2.9	1
106	Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid. Optics Communications, 2015, 356, 628-633.	2.1	32
107	Research on fiber loop coupled resonator slow light and displacement sensing technology. Sensors and Actuators A: Physical, 2015, 233, 472-479.	4.1	6
108	A Novel Current Sensor Based on Magnetic Fluid and Fiber Loop Cavity Ring-Down Technology. IEEE Sensors Journal, 2015, 15, 6192-6198.	4.7	21

#	Article	IF	CITATIONS
109	A novel magnetic fluid based magnetic field F-P current sensor. , 2015, , .		1
110	Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sensors and Actuators B: Chemical, 2015, 209, 431-437.	7.8	64
111	Preparation and spectral characteristics of silver nano-sphere doped quartz micro-fiber. Optics and Laser Technology, 2015, 68, 79-83.	4.6	4
112	SPR based hollow prism used as refractive index sensor. Optik, 2015, 126, 199-201.	2.9	5
113	A NOVEL BRILLOUIN OPTICAL TIME-DOMAIN REFLECTOMETER DEMODULATING METHOD BASED ON A SLOW-LIGHT MACH-ZEHNDER INTERFEROMETER. Instrumentation Science and Technology, 2014, 42, 290-297.	1.8	2
114	DETERMINATION OF CONCENTRATION AND TEMPERATURE BY A FABRY-PEROT CAVITY FORMED BY TWO FIBER BRAGG GRATINGS. Instrumentation Science and Technology, 2014, 42, 412-422.	1.8	2
115	Theoretical Research on Optofluidic Photonic Crystal Waveguide for Broadly Tunable and Ultra-Wideband Slow Light. International Journal of Optomechatronics, 2014, 8, 114-128.	6.6	1
116	Theoretical and experimental research on the effect of coupler splitting ratio for fiber loop ringâ€down spectroscopy technology. Microwave and Optical Technology Letters, 2014, 56, 99-103.	1.4	10
117	Batch production planning method based on the order characteristics for cold mill. , 2014, , .		O
118	All-fiber Mach-Zehnder interferometer using a tapered photonic crystal fiber for refractive index measurement. , $2014, \ldots$		1
119	Fiber Optic Fabry-Perot Magnetic Field Sensor With Temperature Compensation Using a Fiber Bragg Grating. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 2210-2214.	4.7	94
120	PRINCIPLES OF STRUCTURAL SLOW LIGHT AND ITS APPLICATIONS FOR OPTICAL FIBER SENSORS: A REVIEW. Instrumentation Science and Technology, 2014, 42, 72-94.	1.8	4
121	Optical sensing characteristics of the photonic crystal fiber filled with magnetic fluid. Optik, 2014, 125, 1829-1832.	2.9	9
122	Theory and method for enhancing sensitivity of multi-gas sensing based on slow light photonic crystal waveguide. Optik, 2014, 125, 3172-3175.	2.9	4
123	Simulation and analysis of particle trajectory caused by the optical-induced dielectrophoresis force. Microfluidics and Nanofluidics, 2014, 16, 533-540.	2.2	15
124	Study on the assembly and separation of biological cell by optically induced dielectrophoretic technology. Microfluidics and Nanofluidics, 2014, 17, 287-294.	2.2	7
125	Hollow fiber taper with a silver micro-sphere used as refractive index sensor. Optics Communications, 2014, 318, 7-10.	2.1	3
126	Fiber Loop Ring-Down Refractive Index Sensor Based on High- <inline-formula> <tex-math notation="TeX">\$Q\$ </tex-math></inline-formula> Photonic Crystal Cavity. IEEE Sensors Journal, 2014, 14, 1878-1885.	4.7	25

#	Article	IF	Citations
127	Magnetic Fluid-Filled Optical Fiber Fabry–Pérot Sensor for Magnetic Field Measurement. IEEE Photonics Technology Letters, 2014, 26, 217-219.	2.5	108
128	Dispersion optimization of slow light in slotted photonic crystal waveguide by selective air holes infiltration. Optik, 2014, 125, 1967-1970.	2.9	3
129	Simulation and Experimental Measurement of Magnetic Fluid Transmission Characteristics Subjected to the Magnetic Field. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	9
130	SIMULTANEOUS MEASUREMENT OF STRAIN AND TEMPERATURE WITH POLARIZATION MAINTAINING FIBER BRAGG GRATING LOOP MIRROR. Instrumentation Science and Technology, 2014, 42, 298-307.	1.8	6
131	Slow-Light Optimization of Polymer-Infiltrated Slot Photonic Crystal Waveguide. IEEE Nanotechnology Magazine, 2014, 13, 687-694.	2.0	13
132	AN OPTICAL FIBER TEMPERATURE SENSOR BASED ON AN ETHANOL FILLED FABRY-PEROT CAVITY. Instrumentation Science and Technology, 2014, 42, 402-411.	1.8	6
133	Theoretical Research on Microstructure and Optical Properties of Magnetic Fluid Composed of Rod-Like Shape Nanoparticles. IEEE Transactions on Magnetics, 2014, 50, 1-6.	2.1	2
134	Waveform shaping of 1550 nm transmission through hollow quartz fiber. Optik, 2014, 125, 6102-6105.	2.9	1
135	Simulation on Microstructure and Optical Property of Magnetic Fluid Photonic Crystal. IEEE Transactions on Magnetics, 2014, 50, 1-12.	2.1	8
136	Improved design of slow light interferometer and its application in FBG displacement sensor. Sensors and Actuators A: Physical, 2014, 214, 168-174.	4.1	19
137	Latest research progress on methods and technologies for tunable photonic crystals. Optics and Laser Technology, 2014, 64, 278-287.	4.6	16
138	Fiber optic SPR sensor for liquid concentration measurement. Sensors and Actuators B: Chemical, 2014, 192, 229-233.	7.8	116
139	MAGNETIC FIELD AND TEMPERATURE MEASUREMENTS WITH A MAGNETIC FLUID-FILLED PHOTONIC CRYSTAL FIBER BRAGG GRATING. Instrumentation Science and Technology, 2013, 41, 463-472.	1.8	15
140	Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration. Sensors and Actuators B: Chemical, 2013, 184, 179-188.	7.8	34
141	Experimental measurement of the temperature-birefringence characteristics of birefringent photonic crystal fiber filled with ethanol. Optics Communications, 2013, 309, 6-8.	2.1	5
142	Liquid refractive index sensor based on slow light in slotted photonic crystal waveguide. Optik, 2013, 124, 5443-5446.	2.9	7
143	Optimization of Slow Light in Slotted Photonic Crystal Waveguide With Liquid Infiltration. Journal of Lightwave Technology, 2013, 31, 2448-2454.	4.6	19
144	Gas concentration sensor based on fiber loop ring-down spectroscopy. Optics Communications, 2013, 309, 328-332.	2.1	23

#	Article	IF	CITATIONS
145	Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system. Measurement Science and Technology, 2013, 24, 105109.	2.6	17
146	RESEARCH PROGRESS OF THE OPTICAL FIBER SENSORS IN PROCESS TOMOGRAPHY. Instrumentation Science and Technology, 2013, 41, 154-174.	1.8	1
147	IMPROVED SENSITIVITY OF A PHOTONIC CRYSTAL FIBER EVANESCENT-WAVE GAS SENSOR. Instrumentation Science and Technology, 2013, 41, 202-211.	1.8	1
148	REVIEW ON ADVANCES OF SENSORS BASED ON FIBER LOOP RING-DOWN SPECTROSCOPY. Instrumentation Science and Technology, 2013, 41, 349-364.	1.8	12
149	Novel Fiber Optic Gas Sensor Based on Photonic Crystal Slow-Light Waveguide. Microwave and Optical Technology Letters, 2013, 55, 1796-1800.	1.4	2
150	High Sensitive BOTDR Demodulation Method by Using Slow-Light in Fiber Grating. Journal of Lightwave Technology, 2013, 31, 3345-3351.	4.6	10
151	INVESTIGATION ON STABILITY OF EXTRINSIC FABRY–PEROT INTERFEROMETRIC PRESSURE SENSORS FOR HIGH-TEMPERATURE/HIGH-PRESSURE UNDERGROUND APPLICATIONS. Instrumentation Science and Technology, 2013, 41, 143-153.	1.8	3
152	NUMERICAL RESEARCH ON GAIN SPECTRUM OF STIMULATED BRILLOUIN SCATTERING IN PHOTONICS CRYSTAL FIBER. Instrumentation Science and Technology, 2013, 41, 175-186.	1.8	1
153	Fiber loop ring-down refractive index sensor based on high-Q photonic crystal cavity. , 2012, , .		1
154	Wideband Slow Light With Large Group Index and Low Dispersion in Slotted Photonic Crystal Waveguide. Journal of Lightwave Technology, 2012, 30, 2812-2817.	4.6	26
155	Theoretical research on high sensitivity gas sensor due to slow light in slotted photonic crystal waveguide. Sensors and Actuators B: Chemical, 2012, 173, 505-509.	7.8	21
156	REVIEW ON STRUCTURES AND PRINCIPLES OF GAS CELLS IN THE ABSORPTION SPECTRUM–BASED OPTICAL FIBER GAS SENSOR SYSTEMS. Instrumentation Science and Technology, 2012, 40, 385-401.	1.8	6
157	RECENT DEVELOPMENTS AND APPLICATIONS OF POLARIZATION-MAINTAINING FIBER LOOP MIRRORS. Instrumentation Science and Technology, 2012, 40, 239-261.	1.8	6
158	Research on fiber optic temperature sensor using a novel high-birefringent fiber loop mirror with a reflection probe. Sensors and Actuators A: Physical, 2012, 184, 22-27.	4.1	9
159	High sensitivity gas sensing method based on slow light in photonic crystal waveguide. Sensors and Actuators B: Chemical, 2012, 173, 28-31.	7.8	27
160	Structure optimization of slotted photonic crystal waveguide for gas sensor. Proceedings of SPIE, 2012, , .	0.8	0
161	Novel pressure sensor using a Hiâ€Bi photonic crystal fiber FLM and ITS demodulation method. Microwave and Optical Technology Letters, 2012, 54, 915-917.	1.4	3
162	Novel optical devices based on the transmission properties of magnetic fluid and their characteristics. Optics and Lasers in Engineering, 2012, 50, 1177-1184.	3.8	34

#	Article	IF	Citations
163	Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid. Optics and Laser Technology, 2012, 44, 899-902.	4.6	136
164	Photonic Crystal Fibers Bragg Grating Filled Magnetic Fluid for Magnetic Fields Sensing. Sensor Letters, 2012, 10, 465-470.	0.4	4
165	Enhancing the sensitivity of interferometer sensing by slow light in photonic crystal waveguide. Photonics Letters of Poland, 2012, 4, .	0.4	1
166	Novel fiber loop mirror pressure sensor using a LPG as demodulation device., 2011,,.		0
167	Enhancing the sensitivity of liquid refractive index sensor based on slow light photonic crystal waveguide. Proceedings of SPIE, 2011, , .	0.8	0
168	Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics. Journal of Magnetism and Magnetic Materials, 2011, 323, 2987-2996.	2.3	56
169	Research advances of photonic crystal gas and liquid sensors. Sensors and Actuators B: Chemical, 2011, 160, 1288-1297.	7.8	51
170	Output power characteristics of C+Lâ€band erbiumâ€doped superfluorescent fiber source. Microwave and Optical Technology Letters, 2011, 53, 2212-2216.	1.4	7
171	Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor. Sensors and Actuators A: Physical, 2011, 165, 185-188.	4.1	10
172	Enhancing the sensitivity of interferometer by the way of slow light. Proceedings of SPIE, 2010, , .	0.8	0
173	Research on broadband wavelength tunable erbium-doped fiber ring laser. , 2010, , .		1
174	Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement. IEEE Sensors Journal, 2008, 8, 1879-1883.	4.7	68
175	Absolute Deformation Measurement Using Fiber-Optic White Light Interferometer with Two Broad-Band Sources., 0,, 415-422.		O