Mohammad Adil Afroz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2591754/publications.pdf

Version: 2024-02-01

25 papers 802 citations

623734 14 h-index 610901 24 g-index

26 all docs

26 docs citations

times ranked

26

990 citing authors

#	Article	IF	CITATIONS
1	Inner Filter Effect Based Selective Detection of Nitroexplosive-Picric Acid in Aqueous Solution and Solid Support Using Conjugated Polymer. ACS Sensors, 2016, 1, 1070-1077.	7.8	147
2	Ultrasensitive detection of nitroexplosive – picric acid via a conjugated polyelectrolyte in aqueous media and solid support. Chemical Communications, 2015, 51, 7207-7210.	4.1	128
3	Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene. ACS Sensors, 2018, 3, 1451-1461.	7.8	80
4	Thermal Stability and Performance Enhancement of Perovskite Solar Cells Through Oxalic Acid-Induced Perovskite Formation. ACS Applied Energy Materials, 2020, 3, 2432-2439.	5.1	55
5	Impedance Spectroscopy for Metal Halide Perovskite Single Crystals: Recent Advances, Challenges, and Solutions. ACS Energy Letters, 2021, 6, 3275-3286.	17.4	47
6	Mitigating Open-Circuit Voltage Loss in Pb–Sn Low-Bandgap Perovskite Solar Cells via Additive Engineering. ACS Applied Energy Materials, 2021, 4, 1731-1742.	5.1	43
7	Efficient Trap Passivation of MAPbl ₃ via Multifunctional Anchoring for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Sustainable Systems, 2020, 4, 2000078.	5.3	42
8	Crystallization and grain growth regulation through Lewis acid-base adduct formation in hot cast perovskite-based solar cells. Organic Electronics, 2019, 74, 172-178.	2.6	32
9	Influence of m-fluorine substituted phenylene spacer dyes in dye-sensitized solar cells. Organic Electronics, 2016, 39, 371-379.	2.6	24
10	Design, synthesis and DSSC performance of o-fluorine substituted phenylene spacer sensitizers: effect of TiO ₂ thickness variation. Physical Chemistry Chemical Physics, 2016, 18, 28485-28491.	2.8	22
11	Additive-Assisted Defect Passivation for Minimization of Open-Circuit Voltage Loss and Improved Perovskite Solar Cell Performance. ACS Applied Energy Materials, 2021, 4, 10468-10476.	5.1	21
12	Effect of mono- and di-anchoring dyes based on o,m-difluoro substituted phenylene spacer in liquid and solid state dye sensitized solar cells. Dyes and Pigments, 2020, 174, 108021.	3.7	20
13	Conjugated Polymer-Based Electrical Sensor for Ultratrace Vapor-Phase Detection of Nerve Agent Mimics. ACS Sensors, 2020, 5, 191-198.	7.8	20
14	High-Performance Ambient-Condition-Processed Polymer Solar Cells and Organic Thin-Film Transistors. ACS Omega, 2020, 5, 2747-2754.	3.5	17
15	Effect of fluorine substitution and position on phenylene spacer in carbazole based organic sensitizers for dye sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 28579-28587.	2.8	16
16	Engineering polymer solar cells: advancement in active layer thickness and morphology. Journal of Materials Chemistry C, 0, , .	5.5	15
17	Regulating active layer thickness and morphology for high performance hot-casted polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 8191-8198.	5.5	15
18	Twisted donor substituted simple thiophene dyes retard the dye aggregation and charge recombination in dye-sensitized solar cells. Organic Electronics, 2017, 50, 25-32.	2.6	14

#	Article	IF	CITATIONS
19	6,7-Di(thiophen-2-yl)naphtho[2,3-c][1,2,5]thiadiazole and 4,6,7,9-tetra (thiophen-2-yl)naphtho[2,3-c][1,2,5]thiadiazole as new acceptor units for D-A type co-polymer for polymer solar cells. Synthetic Metals, 2019, 252, 113-121.	3.9	11
20	Tuning the open circuit voltage by incorporating a diflurophenyl unit into a polymer backbone to achieve high efficiency polymer solar cells. Sustainable Energy and Fuels, 2021, 5, 874-879.	4.9	9
21	Direct arylation polymerization approach for the synthesis of narrow band gap cyclopentadithiophene based conjugated polymer and its application in solar cell devices. Synthetic Metals, 2017, 226, 56-61.	3.9	7
22	Functionalizing benzothiadiazole with non-conjugating ester groups as side chains in a donor–acceptor polymer improves solar cell performance. New Journal of Chemistry, 2019, 43, 4242-4252.	2.8	6
23	Effect of UV-ozone exposure on the dye-sensitized solar cells performance. Solar Energy, 2020, 208, 212-219.	6.1	4
24	Backbone Engineering with Fluoroarene to Mitigate Morphological Disorder for High-Performance Polymer Solar Cells. ACS Applied Polymer Materials, 2021, 3, 5216-5223.	4.4	3
25	Functional materials for various organic electronic devices. , 2021, , 119-165.		2