
Charlotte G Nyvold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2591694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood, 2002, 99, 1253-1258.	0.6	150
2	Harmonization of BCR-ABL mRNA quantification using a uniform multifunctional control plasmid in 37 international laboratories. Leukemia, 2008, 22, 96-102.	3.3	100
3	Relapse prediction in acute myeloid leukaemia patients in complete remission using <i>WT1</i> as a molecular marker: development of a mathematical model to predict time from molecular to clinical relapse and define optimal sampling intervals. British Journal of Haematology, 2008, 141, 782-791.	1.2	71
4	Minimal residual core binding factor AMLs by real time quantitative PCR—Initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leukemia Research, 2006, 30, 389-395.	0.4	59
5	Chimeric Antigen Receptor T Cells Targeting CD79b Show Efficacy in Lymphoma with or without Cotargeting CD19. Clinical Cancer Research, 2019, 25, 7046-7057.	3.2	56
6	h <scp>MICL</scp> and <scp>CD</scp> 123 in combination with a <scp>CD</scp> 45/ <scp>CD</scp> 34/ <scp>CD</scp> 117 backbone – a universal marker combination for the detection of minimal residual disease in acute myeloid leukaemia. British Journal of Haematology, 2014, 164, 212-222.	1.2	48
7	Post-induction residual leukemia in childhood acute lymphoblastic leukemia quantified by PCR correlates with in vitro prednisolone resistance. Leukemia, 2001, 15, 1066-1071.	3.3	43
8	Molecular typing of adult acute myeloid leukaemia: significance of translocations, tandem duplications, methylation, and selective gene expression profiling. British Journal of Haematology, 2005, 131, 457-467.	1.2	34
9	Immunoelectron microscopy and mass spectrometry for classification of amyloid deposits. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2020, 27, 59-66.	1.4	34
10	The combined expression of HOXA4 and MEIS1 is an independent prognostic factor in patients with AML. European Journal of Haematology, 2009, 83, 439-448.	1.1	33
11	Wilms' tumor 1 mutation accumulated during therapy in acute myeloid leukemia: biological and clinical implications. Leukemia, 2006, 20, 2051-2054.	3.3	28
12	Analysis of aMycoplasma hominismembrane protein, P120. FEMS Microbiology Letters, 1994, 121, 121-127.	0.7	27
13	Interleukin-21 mRNA expression during virus infections. Cytokine, 2006, 33, 41-45.	1.4	27
14	Characterization and prognostic significance of mitochondrial <scp>DNA</scp> variations in acute myeloid leukemia. European Journal of Haematology, 2013, 90, 385-396.	1.1	27
15	Sensitivity of minimal residual disease in acute myeloid leukaemia in first remission – methodologies in relation to their clinical situation. British Journal of Haematology, 2012, 158, 569-580.	1.2	26
16	Sensitive ligand-based protein quantification using immuno-PCR: A critical review of single-probe and proximity ligation assays. BioTechniques, 2014, 56, 217-228.	0.8	24
17	A decade with whole exome sequencing in haematology. British Journal of Haematology, 2020, 188, 367-382.	1.2	24
18	Development of standardized approaches to reporting of minimal residual disease data using a reporting software package designed within the European LeukemiaNet. Leukemia, 2011, 25, 1168-1173.	3.3	23

CHARLOTTE G NYVOLD

#	Article	IF	CITATIONS
19	A highly sensitive and specific <scp>qPCR</scp> assay for quantification of the biomarker <i>SOX11</i> in mantle cell lymphoma. European Journal of Haematology, 2012, 89, 385-394.	1.1	19
20	Measurable residual disease assessment by qPCR in peripheral blood is an informative tool for disease surveillance in childhood acute myeloid leukaemia. British Journal of Haematology, 2020, 190, 198-208.	1.2	19
21	Competitive PCR for quantification of minimal residual disease in acute lymphoblastic leukaemia. Journal of Immunological Methods, 2000, 233, 107-118.	0.6	15
22	Erythropoietin receptor defect: a cause of primary polycythaemia. British Journal of Haematology, 2004, 125, 537-538.	1.2	15
23	Delineation and molecular characterization of acute myeloid leukemia patients with coduplication of FLT3 and MLL. European Journal of Haematology, 2005, 75, 185-192.	1.1	15
24	Promoter hypermethylation of the retinoic acid receptor beta2 gene is frequent in acute myeloid leukaemia and associated with the presence of CBFbeta-MYH11 fusion transcripts. British Journal of Haematology, 2006, 133, 276-283.	1.2	15
25	Germline GATA1s-generating mutations predispose toÂleukemia with acquired trisomy 21 and Down syndrome-like phenotype. Blood, 2022, 139, 3159-3165.	0.6	15
26	Delineation of known and new transcript variants of the SETMAR (Metnase) gene and the expression profile in hematologic neoplasms. Experimental Hematology, 2014, 42, 448-456.e4.	0.2	14
27	Infectious complications after chemotherapy and stem cell transplantation in multiple myeloma: Implications of Fc gamma receptor and myeloperoxidase promoter polymorphisms. Leukemia and Lymphoma, 2008, 49, 1116-1122.	0.6	13
28	Daratumumab for treatment of blastic plasmacytoid dendritic cell neoplasm. A single-case report. Haematologica, 2019, 104, e432-e433.	1.7	13
29	WT1 gene expression in children with Down syndrome and transient myeloproliferative disorder. Leukemia Research, 2006, 30, 543-546.	0.4	12
30	SOX11 as a minimal residual disease marker for Mantle cell lymphoma. Leukemia Research, 2014, 38, 918-924.	0.4	11
31	Harnessing the Immune System to Fight Multiple Myeloma. Cancers, 2021, 13, 4546.	1.7	10
32	Capillary gel electrophoresis: a simple method for identification of mutations and polymorphisms in the <i>CEBPA</i> gene in patients with acute myeloid leukaemia. European Journal of Haematology, 2008, 81, 273-280.	1.1	9
33	SOX11, CCND1, BCL1/IgH and IgH-VDJ: a battle of minimal residual disease markers in mantle cell lymphoma?. Leukemia and Lymphoma, 2015, 56, 2724-2727.	0.6	9
34	Measurable residual disease monitoring using Wilms tumor gene 1 expression in childhood acute myeloid leukemia based on childâ€specific reference values. Pediatric Blood and Cancer, 2019, 66, e27671.	0.8	9
35	Mitochondrial cytochrome <i>c</i> oxidase subunit <scp>II</scp> variations predict adverse prognosis in cytogenetically normal acute myeloid leukaemia. European Journal of Haematology, 2013, 91, 295-303.	1.1	8
36	Perspective: sensitive detection of residual lymphoproliferative disease by NGS and clonal rearrangements—how low can you go?. Experimental Hematology, 2021, 98, 14-24.	0.2	8

#	Article	IF	CITATIONS
37	A novel <scp>RT</scp> â€q <scp>PCR</scp> assay for quantification of the <i><scp>MLL</scp>â€<scp>MLLT</scp>3</i> fusion transcript in acute myeloid leukaemia. European Journal of Haematology, 2013, 91, 394-398.	1.1	7
38	Common consensus LNA probe for quantitative PCR assays in cancer: Vehicles for minimal residual disease detection in t(11;14) and t(14;18) positive malignant lymphomas. Journal of Immunological Methods, 2014, 406, 131-136.	0.6	7
39	Chronic lymphocytic leukemia patients with heterogeneously or fully methylated <i>LPL</i> promotor display longer time to treatment. Epigenomics, 2018, 10, 1155-1166.	1.0	7
40	Molecular characterization of sorted malignant B cells from patients clinically identified with mantle cell lymphoma. Experimental Hematology, 2020, 84, 7-18.e12.	0.2	7
41	A patient with a 20-year lag phase between JAK2-V617F+ myeloproliferation and NPM1-mutated AML arguing against a common origin of disease. European Journal of Haematology, 2011, 87, 461-463.	1.1	6
42	Differential expression levels and methylation status of <i>ROBO1</i> in mantle cell lymphoma and chronic lymphocytic leukaemia. International Journal of Laboratory Hematology, 2017, 39, e70-e73.	0.7	6
43	Measurable Residual Disease Assessment By qPCR in Peripheral Blood Is an Informative Tool for Disease Surveillance in Childhood Acute Myeloid Leukemia. Blood, 2018, 132, 2754-2754.	0.6	6
44	Novel scripts for improved annotation and selection of variants from whole exome sequencing in cancer research. MethodsX, 2015, 2, 145-153.	0.7	5
45	IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load. Haematologica, 2022, 107, 877-886.	1.7	5
46	Nature and nurture: a case of transcending haematological preâ€malignancies in a pair of monozygotic twins adding possible clues on the pathogenesis of Bâ€cell proliferations. British Journal of Haematology, 2015, 169, 391-400.	1.2	4
47	Rapid detection of FLT3 exon 20 tyrosine kinase domain mutations in patients with acute myeloid leukemia by high-resolution melting analysis. Leukemia and Lymphoma, 2012, 53, 1225-1229.	0.6	3
48	Chronic myeloid leukaemia presenting with isolated thrombocythaemia, a case revealing its stem cell biology. British Journal of Haematology, 2013, 162, 141-144.	1.2	3
49	Cell sorting enables interphase fluorescence <i>in situ</i> hybridization detection of low <scp><i>BCRâ€ABL</i></scp> <i>1</i> producing stem cells in chronic myeloid leukaemia patients beyond deep molecular remission. British Journal of Haematology, 2014, 164, 53-60.	1.2	3
50	Detailed characterization of the transcriptome of single B cells in mantle cell lymphoma suggesting a potential use for SOX4. Scientific Reports, 2021, 11, 19092.	1.6	3
51	Multiplex PCR for the detection ofBCL-1/IGHandBCL-2/IGHgene rearrangements – clinical validation in a prospective study of blood and bone marrow in 258 patients with or suspected of non-Hodgkin's lymphoma Acta Oncológica, 2007, 46, 21-30.	0.8	2
52	Critical methodological factors in diagnosing minimal residual disease in hematological malignancies using quantitative PCR. Expert Review of Molecular Diagnostics, 2015, 15, 581-584.	1.5	2
53	CNAplot — Software for visual inspection of chromosomal copy number alteration in cancer using juxtaposed sequencing read depth ratios and variant allele frequencies. SoftwareX, 2020, 11, 100503.	1.2	2
54	Distal chromosome 1q aberrations and initial response to ibrutinib in central nervous system relapsed mantle cell lymphoma. Leukemia Research Reports, 2021, 15, 100255.	0.2	2

#	Article	IF	CITATIONS
55	Measurable Residual Disease Monitoring of SPAG6, ST18, PRAME, and XAGE1A Expression in Peripheral Blood May Detect Imminent Relapse in Childhood Acute Myeloid Leukemia. Journal of Molecular Diagnostics, 2021, 23, 1787-1799.	1.2	2
56	Unraveling The Leukemic Nature Of hMICL and CD123 Expressing Cells In Acute Myeloid Leukemia. Blood, 2013, 122, 2626-2626.	0.6	2
57	Investigation of circulating DNA integrity after blood collection. BioTechniques, 2021, 71, 550-555.	0.8	2
58	Harmonized Testing for BCR-ABL Kinase Domain Mutations In CML: Results of a Survey and First Control Round within 28 National Reference Laboratories In Europe. Blood, 2010, 116, 894-894.	0.6	1
59	Chronic Myeloid Leukemia Presenting with Isolated Thrombocythemia: A Case Revealing Its Stem Cell Biology. Blood, 2012, 120, 4427-4427.	0.6	1
60	Efficient, Non-Viral and Reproducible Protocol for Stable Knockdown of Genes in Mantle Cell Lymphoma Cell Lines. Blood, 2020, 136, 1-2.	0.6	1
61	Acute myeloid leukemia exhibiting clonal instability during treatment: Implications for measurable residual disease assessments. Experimental Hematology, 2022, 107, 51-59.	0.2	1
62	Mantle cell lymphoma and the evidence of an immature lymphoid component. Leukemia Research, 2022, 115, 106824.	0.4	1
63	Reply to â€~Wilms' tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML' by Summers et al Leukemia, 2007, 21, 552-552.	3.3	Ο
64	Sensitive quantification of the intronless SOX11 mRNA from lymph nodes biopsies in mantle cell lymphoma. Leukemia Research, 2019, 78, 1-2.	0.4	0
65	Treatment of Molecular Relapse by Cessation of Immunosuppression After Hematopoietic Stem Cell Transplantation in Pediatric FLT3-ITD AML Monitored by WT1 Expression in Peripheral Blood. Journal of Pediatric Hematology/Oncology, 2019, 41, 417-419.	0.3	0
66	Replicate whole-genome next-generation sequencing data derived from Caucasian donor saliva samples. Data in Brief, 2021, 38, 107349.	0.5	0
67	A Multiplex PCR for Detection of Genetic Aberrations in Non-Hodkin's Lymphoma Blood, 2004, 104, 4554-4554.	0.6	0
68	Clues for Novel Pathways in Leukemogenesis: Global Gene Expression Profiling in Acute Myeloid Leukemia Patients Negative for a Comprehensive Series of Molecular Alterations Blood, 2004, 104, 3375-3375.	0.6	0
69	Relapse Prediction in AML Patients in Complete Remission Using WT1 as a Molecular Marker: Development of a Mathematical Model To Predict Time from Molecular to Clinical Relapse and Define Optimal Sampling Intervals Blood, 2007, 110, 3495-3495.	0.6	Ο
70	Mutations in Mitochondrial DNA Is An Adverse Factor for Survival in Patients with Acute Myeloid Leukemia Blood, 2008, 112, 1523-1523.	0.6	0
71	Development of Standardized Approaches to Reporting of Minimal Residual Disease Data Using a Reporting Software Package Designed within the European LeukemiaNet (ELN) Blood, 2009, 114, 1619-1619.	0.6	0
72	Development of a Splenic Marginal Zone Lymphoma Associated with Active Chronic Visceral Leishmaniasis. Blood, 2011, 118, 5202-5202.	0.6	0

Charlotte G Nyvold

#	Article	IF	CITATIONS
73	Two Hematological Pre-Malignancies In a Pair Of Homozygous Twins Revealing Differences In Their Pre- and Postnatal Development. Blood, 2013, 122, 5262-5262.	0.6	Ο
74	Human MICL Is An Early Marker In Myeloid Differentiation and Identifies a Subgroup Of CML Patients With Expanded Granulocyte-Macrophage Progenitor Populations At Diagnosis. Blood, 2013, 122, 2704-2704.	0.6	0
75	Cell Sorting Enables iFISH Detection Of Low BCR-ABL Producing Stem Cells In CML Patients Beyond Deep Molecular Remission. Blood, 2013, 122, 1501-1501.	0.6	0
76	Relapse Kinetics in Acute Myeloid Leukemis Cases Encompassing More Than One Common Mutation: Towards a Unified Model. Blood, 2014, 124, 1055-1055.	0.6	0
77	SOX11, CCND1, BCL1/Igh, and Igh-VDJ – a Plethora of Markers for Minimal Residual Disease in Mantle Cell Lymphoma: Which One to Choose?. Blood, 2014, 124, 2957-2957.	0.6	0
78	A New Approach to Identify Pathogenic Mutations and Inherited Variants By Exome Sequencing – Using a Pair of Identical Twins with Monoclonal Lymphosis As Case Model. Blood, 2014, 124, 1979-1979.	0.6	0
79	qPCR MRD Monitoring in Peripheral Blood May Predict Hematological Relapse in Pediatric Acute Myeloid Leukemia. Blood, 2015, 126, 3749-3749.	0.6	0
80	Post-Therapy Measurable Residual Disease Monitoring in Peripheral Blood Using Overexpressed Genes in Childhood Acute Myeloid Leukemia. Blood, 2018, 132, 1480-1480.	0.6	0
81	Quantification of Fusion Transcripts Reveals Slower Treatment Kinetics As Compared with Multiparameter Flow Cytometry during Induction Treatment of Acute Myeloid Leukemia in Children. Blood, 2018, 132, 2814-2814.	0.6	0