
Benjamin Podbilewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2591527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Live imaging-based assay for visualising species-specific interactions in gamete adhesion molecules. Scientific Reports, 2022, 12, .	3.3	4
2	Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins. Nature Communications, 2022, 13, .	12.8	17
3	Neuron tracing and quantitative analyses of dendritic architecture reveal symmetrical three-way-junctions and phenotypes of git-1 in C. elegans. PLoS Computational Biology, 2021, 17, e1009185.	3.2	2
4	Programmed cell fusion in development and homeostasis. Current Topics in Developmental Biology, 2021, 144, 215-244.	2.2	8
5	Fusexins, HAP2/GCS1 and Evolution of Gamete Fusion. Frontiers in Cell and Developmental Biology, 2021, 9, 824024.	3.7	14
6	How cells fuse. Journal of Cell Biology, 2019, 218, 1436-1451.	5.2	133
7	Lessons from Worm Dendritic Patterning. Annual Review of Neuroscience, 2019, 42, 365-383.	10.7	34
8	Fusogens. Current Biology, 2018, 28, R378-R380.	3.9	32
9	<i>Arabidopsis</i> HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. Journal of Cell Biology, 2017, 216, 571-581.	5.2	93
10	Extrinsic Repair of Injured Dendrites as a Paradigm for Regeneration by Fusion in <i>Caenorhabditis elegans</i> . Genetics, 2017, 206, 215-230.	2.9	48
11	AFF-1 fusogen can rejuvenate the regenerative potential of adult dendritic trees via self-fusion. Development (Cambridge), 2017, 144, 2364-2374.	2.5	45
12	Endocytosis regulates membrane localization and function of the fusogen EFF-1. Small GTPases, 2017, 8, 177-180.	1.6	15
13	The hallmarks of cell-cell fusion. Development (Cambridge), 2017, 144, 4481-4495.	2.5	148
14	Membrane fusion: Conserved and diverse. Seminars in Cell and Developmental Biology, 2016, 60, 63-64.	5.0	1
15	RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion. Cell Reports, 2016, 14, 1517-1527.	6.4	43
16	Organogenesis of the C. elegans Vulva and Control of Cell Fusion. , 2016, , 9-56.		2
17	Structural Basis of Eukaryotic Cell-Cell Fusion. Cell, 2014, 157, 407-419.	28.9	127
18	Dendritic tree extraction from noisy maximum intensity projection images in C. elegans. BioMedical Engineering OnLine, 2014, 13, 74.	2.7	9

BENJAMIN PODBILEWICZ

#	Article	IF	CITATIONS
19	Virus and Cell Fusion Mechanisms. Annual Review of Cell and Developmental Biology, 2014, 30, 111-139.	9.4	174
20	Class II Membrane Fusion Proteins in Viral and Cellular Fusion Events. Biophysical Journal, 2013, 104, 12a.	0.5	0
21	Genetic basis of cell–cell fusion mechanisms. Trends in Genetics, 2013, 29, 427-437.	6.7	199
22	Axon Regrowth during Development and Regeneration Following Injury Share Molecular Mechanisms. Current Biology, 2012, 22, 1774-1782.	3.9	68
23	Eukaryotic Cell–Cell Fusion Families. Current Topics in Membranes, 2011, 68, 209-234.	0.9	27
24	Conserved Eukaryotic Fusogens Can Fuse Viral Envelopes to Cells. Science, 2011, 332, 589-592.	12.6	75
25	Heterochronic Control of AFF-1-Mediated Cell-to-Cell Fusion in C. elegans. Advances in Experimental Medicine and Biology, 2011, 713, 5-11.	1.6	5
26	Evolution of programmed cell fusion: Common mechanisms and distinct functions. Developmental Dynamics, 2010, 239, 1515-1528.	1.8	36
27	The Fusogen EFF-1 Controls Sculpting of Mechanosensory Dendrites. Science, 2010, 328, 1285-1288.	12.6	155
28	Changing of the cell division axes drives vulva evolution in nematodes. Developmental Biology, 2008, 313, 142-154.	2.0	15
29	Viral and Developmental Cell Fusion Mechanisms: Conservation and Divergence. Developmental Cell, 2008, 14, 11-21.	7.0	101
30	Fusion-pore expansion during syncytium formation is restricted by an actin network. Journal of Cell Science, 2008, 121, 3619-3628.	2.0	47
31	Cell Fusion in Caenorhabditis elegans. Methods in Molecular Biology, 2008, 475, 53-74.	0.9	17
32	Genetic Control of Fusion Pore Expansion in the Epidermis ofCaenorhabditis elegans. Molecular Biology of the Cell, 2007, 18, 1153-1166.	2.1	39
33	Barrier to autointegration factor blocks premature cell fusion and maintains adult muscle integrity in C. elegans. Journal of Cell Biology, 2007, 178, 661-673.	5.2	58
34	AFF-1, a FOS-1-Regulated Fusogen, Mediates Fusion of the Anchor Cell in C. elegans. Developmental Cell, 2007, 12, 683-698.	7.0	125
35	Trends, Stasis, and Drift in the Evolution of Nematode Vulva Development. Current Biology, 2007, 17, 1925-1937.	3.9	194
36	Cell fusion during development. Trends in Cell Biology, 2007, 17, 537-546.	7.9	114

#	Article	IF	CITATIONS
37	The C. elegans Developmental Fusogen EFF-1 Mediates Homotypic Fusion in Heterologous Cells and In Vivo. Developmental Cell, 2006, 11, 471-481.	7.0	124
38	Cell Fusion in Development and Disease. , 2006, , 219-244.		2
39	Live Imaging of Caenorhabditis elegans: Examples. Cold Spring Harbor Protocols, 2006, 2006, pdb.ip19-pdb.ip19.	0.3	3
40	Live Imaging of Caenorhabditis elegans: Preparation of Samples. Cold Spring Harbor Protocols, 2006, 2006, 2006, pdb.prot4601-pdb.prot4601.	0.3	11
41	Cell fusion. WormBook, 2006, , 1-32.	5.3	37
42	Live Imaging of Caenorhabditis elegans: Observation of Nematodes and Data Collection. Cold Spring Harbor Protocols, 2006, 2006, pdb.ip18-pdb.ip18.	0.3	0
43	ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development (Cambridge), 2005, 132, 739-749.	2.5	52
44	The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes and Development, 2004, 18, 2380-2391.	5.9	71
45	The LIM domain protein UNC-95 is required for the assembly of muscle attachment structures and is regulated by the RING finger protein RNF-5 in C. elegans. Journal of Cell Biology, 2004, 165, 857-867.	5.2	43
46	Sweet control of cell migration, cytokinesis and organogenesis. Nature Cell Biology, 2004, 6, 9-11.	10.3	9
47	EFF-1 Is Sufficient to Initiate and Execute Tissue-Specific Cell Fusion in C. elegans. Current Biology, 2004, 14, 1587-1591.	3.9	91
48	Pristionchus pacificus vulva formation: polarized division, cell migration, cell fusion, and evolution of invagination. Developmental Biology, 2004, 266, 322-333.	2.0	19
49	The story of cell fusion: Big lessons from little worms. BioEssays, 2003, 25, 672-682.	2.5	59
50	How Does a Cell Anchor and Invade an Organ?. Developmental Cell, 2003, 5, 5-7.	7.0	7
51	Control of Vulval Competence and Centering in the Nematode <i>Oscheius</i> sp. 1 CEW1. Genetics, 2003, 163, 133-146.	2.9	40
52	The Type I Membrane Protein EFF-1 Is Essential for Developmental Cell Fusion. Developmental Cell, 2002, 2, 355-362.	7.0	214
53	LIN-39/Hox triggers cell division and represses EFF-1/fusogen-dependent vulval cell fusion. Genes and Development, 2002, 16, 3136-3141.	5.9	80

54 Fusomorphogenesis: Cell fusion in organ formation. , 2000, 218, 30-51.

#	Article	IF	CITATIONS
55	Temperature-controlled microscopy for imaging living cells: apparatus, thermal analysis and temperature dependency of embryonic elongation in Caenorhabditis elegans. Journal of Microscopy, 2000, 199, 214-223.	1.8	15
56	Membrane fusion as a morphogenetic force in nematode development. Nematology, 2000, 2, 99-111.	0.6	11
57	Ring Formation Drives Invagination of the Vulva in Caenorhabditis elegans: Ras, Cell Fusion, and Cell Migration Determine Structural Fates. Developmental Biology, 2000, 221, 233-248.	2.0	34
58	Cell Fusions in the Developing Epithelia of C. elegans. Developmental Biology, 1994, 161, 408-424.	2.0	183
59	[20] Reconstitution of endocytosis and recycling using perforated madin-darby canine kidney cells. Methods in Enzymology, 1992, 219, 198-211.	1.0	2