Hao Gong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2591104/hao-gong-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

313	13,875	55	109
papers	citations	h-index	g-index
330	15,352 ext. citations	5.8	6.62
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
313	Long-life reversible Li-CO2 batteries with optimized Li2CO3 flakes as discharge products on palladium-copper nanoparticles. <i>Inorganic Chemistry Frontiers</i> , 2022 , 9, 1533-1540	6.8	O
312	Super-assembled carbon nanofibers decorated with dual catalytically active sites as bifunctional oxygen catalysts for rechargeable Zn-air batteries. <i>Materials Today Energy</i> , 2021 , 20, 100682	7	4
311	A P-type mid-infrared transparent semiconductor LaSe2 film with small hole effective mass and high carrier concentration. <i>Applied Physics Letters</i> , 2021 , 118, 261602	3.4	2
310	Aqueous Formate-Based Li-CO2 Battery with Low Charge Overpotential and High Working Voltage. <i>Advanced Energy Materials</i> , 2021 , 11, 2101630	21.8	4
309	Colossal dielectric response and relaxation behavior in novel system of Zr4+ and Nb5+ co-substituted CaCu3Ti4O12 ceramics. <i>Ceramics International</i> , 2021 , 47, 111-120	5.1	16
308	High-Performance Al2O3/PAALi Composite Separator Prepared by Water-Based Slurry for High-Power Density Lithium-Based Battery. <i>Advanced Engineering Materials</i> , 2021 , 23, 2001009	3.5	3
307	Efficient photocathode performance of lithium ion doped LaFeO3 nanorod arrays in hydrogen evolution. <i>New Journal of Chemistry</i> , 2021 , 45, 3463-3468	3.6	4
306	Effect of Hole Effective Mass and Carrier Concentration on the Conductivity of a Transparent p-Type LaCuOS Semiconductor with Good Transmittance in Both Visible and Mid-Infrared Ranges. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100273	2.5	0
305	Nano-Sized Au Particle-Modified Carbon Nanotubes as an Effective and Stable Cathode for Li © O2 Batteries. <i>European Journal of Inorganic Chemistry</i> , 2021 , 2021, 590-596	2.3	6
304	Introduction of photo electrochemical water-oxidation mechanism into hybrid lithium xygen batteries. <i>Energy Storage Materials</i> , 2020 , 31, 11-19	19.4	13
303	Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF-TrFE-CFE)/PVDF polymer blended composite films. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 13143-13153	3.6	18
302	Success in both p-type and n-type of a novel transparent AgCuI alloy semiconductor system for homojunction devices. <i>Applied Materials Today</i> , 2020 , 20, 100703	6.6	3
301	Significantly enhanced breakdown field with high grain boundary resistance and dielectric response in 0.1Na0.5Bi0.5TiO3-0.9BaTiO3 doped CaCu3Ti4O12 ceramics. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 3011-3018	6	10
300	Promoting hole transfer for photoelectrochemical water oxidation through a manganese cluster catalyst bioinspired by natural photosystem II. <i>Chemical Communications</i> , 2020 , 56, 4244-4247	5.8	6
299	Shallow defects levels and extract detrapped charges to stabilize highly efficient and hysteresis-free perovskite photovoltaic devices. <i>Nano Energy</i> , 2020 , 71, 104556	17.1	28
298	Chemical evolution of lead in ancient artifacts -A case study of early Chinese lead-silicate glaze. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 2222-2228	6	2
297	New Transparent Magnetic Semiconductor NiCul which Can Perform as Either P-type or N-type and Success in the P-N Homojunction Diode. <i>ACS Applied Materials & Diversary Season</i> , 12, 6048-6055	9.5	4

296	2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction. <i>Nano-Micro Letters</i> , 2020 , 12, 86	19.5	71
295	Mobility Improvement of Sol-Gel Method Processed Transparent SnS Thin Films by Na Doping. Journal of Nanoscience and Nanotechnology, 2020 , 20, 5102-5106	1.3	
294	N-Doped ordered porous carbon decorated with WN and Ni nanoparticles for enhanced electrocatalytic properties. <i>Journal of Porous Materials</i> , 2020 , 27, 719-726	2.4	2
293	A New Highly Conductive Direct Gap p-Type Semiconductor LaYCuOS for Dual Applications: Transparent Electronics and Thermoelectricity. <i>ACS Applied Materials & District Action Semiconductor LayCuOS</i> for Dual Applications:	5 6 95	8
292	Determination of native contents of 4?-O-methylpyridoxine and its glucoside in raw and heated Ginkgo biloba seeds by high-performance liquid chromatography. <i>Journal of Food Measurement and Characterization</i> , 2020 , 14, 917-924	2.8	7
291	Fabrication and theoretical investigation of cobaltosic sulfide nanosheets for flexible aqueous Zn/Co batteries. <i>Nano Energy</i> , 2020 , 68, 104314	17.1	34
290	Excellent Capacitor-Varistor Properties in Lead-Free CaCuTiO-SrTiO System with a Wrinkle Structure via Interface Engineering. <i>ACS Applied Materials & Discrete Structure</i> (12), 48781-48793	9.5	11
289	Solar-enhanced hybrid lithium-oxygen batteries with a low voltage and superior long-life stability. <i>Chemical Communications</i> , 2020 , 56, 13642-13645	5.8	1
288	Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. <i>Nano Research</i> , 2020 , 13, 2784-2790	10	12
287	Full Defects Passivation Enables 21% Efficiency Perovskite Solar Cells Operating in Air. <i>Advanced Energy Materials</i> , 2020 , 10, 2001958	21.8	65
286	Electrocatalytic Synthesis of Hydrogen Peroxide over Au/TiO and Electrochemical Trace of OOH* Intermediate. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 4280-4285	4.5	1
285	Enhanced water oxidation reaction kinetics on a BiVO4 photoanode by surface modification with Ni4O4 cubane. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 278-288	13	31
284	Hole Transport Modulations in Low Dimensional ECuI Films: Implication for High Figure of Merit and Thin Film Transistors. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1029-1037	4	21
283	Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. <i>Energy Storage Materials</i> , 2019 , 23, 1-7	19.4	26
282	MetalBrganic framework-derived hierarchical MoS2/CoS2 nanotube arrays as pH-universal electrocatalysts for efficient hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13339-1334	613	81
281	20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. <i>Energy and Environmental Science</i> , 2019 , 12, 1622-1633	35.4	134
280	Enhanced Li2O2 Decomposition in Rechargeable LiD2 Battery by Incorporating WO3 Nanowire Array Photocatalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5931-5939	8.3	21
279	A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. <i>Nano Energy</i> , 2019 , 59, 41-49	17.1	146

278	All solid-state lithium-oxygen batteries with MOF-derived nickel cobaltate nanoflake arrays as high-performance oxygen cathodes. <i>Chemical Communications</i> , 2019 , 55, 10689-10692	5.8	11
277	Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. <i>Nano Research</i> , 2019 , 12, 2528-2534	10	10
276	Highly Conducting p-Type Transparent LnCuOS (Ln = La and Nd) and pl Junction by Using Ink. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1605-1615	4	2
275	Hollow Mesoporous FeO Nanospindles/CNTs Composite: An Efficient Catalyst for High-Performance Li-O Batteries. <i>Frontiers in Chemistry</i> , 2019 , 7, 511	5	O
274	Influence of packaging materials on postharvest physiology and texture of garlic cloves during refrigeration storage. <i>Food Chemistry</i> , 2019 , 298, 125019	8.5	11
273	Transparent p-Type Semiconductors: Copper-Based Oxides and Oxychalcogenides. <i>Coatings</i> , 2019 , 9, 137	2.9	34
272	Synthesis of Tungsten Trioxide/Hematite Core-Shell Nanoarrays for Efficient Photoelectrochemical Water Splitting. <i>ChemElectroChem</i> , 2019 , 6, 543-551	4.3	14
271	In situ palladium/nitrogen-doped ordered mesoporous carbon hybrids as highly active and durable electrocatalysts for oxygen reduction reaction. <i>Journal of Porous Materials</i> , 2019 , 26, 371-379	2.4	8
270	Direct n- to p-Type Channel Conversion in Monolayer/Few-Layer WS Field-Effect Transistors by Atomic Nitrogen Treatment. <i>ACS Nano</i> , 2018 , 12, 2506-2513	16.7	67
269	Large-Scale Color-Changing Thin Film Energy Storage Device with High Optical Contrast and Energy Storage Capacity. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1658-1663	6.1	9
268	Structure stability of polyaniline/graphene nanocomposites in gamma-ray environment. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2018 , 315, 627-638	1.5	5
267	The synergistic effect of Ceria and Co in N-doped leaf-like carbon nanosheets derived from a 2D MOF and their enhanced performance in the oxygen reduction reaction. <i>Chemical Communications</i> , 2018 , 54, 1623-1626	5.8	75
266	Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. <i>Energy Storage Materials</i> , 2018 , 13, 49-56	19.4	49
265	Constructing Ordered Three-Dimensional TiO Channels for Enhanced Visible-Light Photocatalytic Performance in CO Conversion Induced by Au Nanoparticles. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 577	- § 83	15
264	Cobalt-Doped Perovskite-Type Oxide LaMnO as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 528-535	4.5	40
263	Highly Stable, New, Organic-Inorganic Perovskite (CH NH) PdBr : Synthesis, Structure, and Physical Properties. <i>Chemistry - A European Journal</i> , 2018 , 24, 4991-4998	4.8	20
262	Band alignment of 2D WS2/HfO2 interfaces from x-ray photoelectron spectroscopy and first-principles calculations. <i>Applied Physics Letters</i> , 2018 , 112, 171604	3.4	12
261	High over-potential nitrogen-doped activated carbon towards hydrogen evolution inhibition in sulfuric acid solution. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 14170-14179	2.1	6

(2017-2018)

260	PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells. Journal of Materials Chemistry A, 2018 , 6, 16583-16589	13	105
259	Fabrication of perovskite-based porous nanotubes as efficient bifunctional catalyst and application in hybrid lithiumBxygen batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16943-16949	13	17
258	Determination and Comparison of 4MO-Methylpyridoxine Analogues in Ginkgo biloba Seeds at Different Growth Stages. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 7916-7922	5.7	8
257	High performance p-type transparent LaCuOS thin film fabricated through a hydrogen-free method. <i>Applied Materials Today</i> , 2018 , 13, 15-23	6.6	4
256	Highly stretchable and transparent films based on cellulose. <i>Carbohydrate Polymers</i> , 2018 , 201, 446-453	10.3	27
255	Selective Deposition of Ag3PO4 on Specific Facet of BiVO4 Nanoplate for Enhanced Photoelectrochemical Performance. <i>Solar Rrl</i> , 2018 , 2, 1800102	7.1	30
254	Dual use of Cu2ZnSnS4 in solar cells and energy storage devices. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 180, 328-333	6.4	4
253	Ginkgo biloba extracts-loaded starch nano-spheres: Preparation, characterization, and in vitro release kinetics. <i>International Journal of Biological Macromolecules</i> , 2018 , 106, 148-157	7.9	23
252	Simultaneous edge and electronic control of MoS nanosheets through Fe doping for an efficient oxygen evolution reaction. <i>Nanoscale</i> , 2018 , 10, 20113-20119	7.7	43
251	Interlayer interactions in 2D WS/MoS heterostructures monolithically grown by in situ physical vapor deposition. <i>Nanoscale</i> , 2018 , 10, 22927-22936	7.7	38
250	Enhancement of Conductivity and Thermoelectric Property of PEDOT:PSS via Acid Doping and Single Post-Treatment for Flexible Power Generator. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1800085	5.9	55
249	Highly Stable New Organic-Inorganic Hybrid 3D Perovskite CHNHPdI and 2D Perovskite (CHNH)PdI: DFT Analysis, Synthesis, Structure, Transition Behavior, and Physical Properties. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5862-5872	6.4	16
248	Achievement of highly conductive p-type transparent NdCuOS film with Cu deficiency and effective doping. <i>Materials Today Chemistry</i> , 2018 , 10, 79-89	6.2	7
247	Multifunctional RbCl dopants for efficient inverted planar perovskite solar cell with ultra-high fill factor, negligible hysteresis and improved stability. <i>Nano Energy</i> , 2018 , 53, 567-578	17.1	47
246	Boosted electrochemical properties from the surface engineering of ultrathin interlaced Ni(OH) nanosheets with Co(OH) quantum dot modification. <i>Nanoscale</i> , 2018 , 10, 10554-10563	7.7	35
245	Porous Iron-Tungsten Carbide Electrocatalyst with High Activity and Stability toward Oxygen Reduction Reaction: From the Self-Assisted Synthetic Mechanism to Its Active-Species Probing. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 9, 3713-3722	9.5	32
244	Synthesis of yellow mesoporous Ni-doped TiO2 with enhanced photoelectrochemical performance under visible light. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 898-906	6.8	36
243	P-type transparent LaCuOS semiconductor synthesized via a novel two-step solid state reaction and sulfurization process. <i>Ceramics International</i> , 2017 , 43, 6295-6302	5.1	8

242	Remarkable improvement in supercapacitor performance by sulfur introduction during a one-step synthesis of nickel hydroxide. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 10462-10469	3.6	16
241	Unravelling the correlation between nickel to copper ratio of binary oxides and their superior supercapacitor performance. <i>Electrochimica Acta</i> , 2017 , 234, 82-92	6.7	21
240	Functional Species Encapsulated in Nitrogen-Doped Porous Carbon as a Highly Efficient Catalyst for the Oxygen Reduction Reaction. <i>Chemistry - A European Journal</i> , 2017 , 23, 3398-3405	4.8	28
239	Effect of Sulfide Precursor Selection on the Nucleation, Growth, and Elemental Composition of Cu2ZnSnS4 Nanocrystals. <i>Crystal Growth and Design</i> , 2017 , 17, 73-79	3.5	5
238	Formaldehyde assisted reduction achieved p-type orthorhombic tin oxide film prepared by an inexpensive chemical method. <i>Materials Research Express</i> , 2017 , 4, 116411	1.7	2
237	Light enhanced energy storage ability through a hybrid plasmonic Ag nanowire decorated hydroxide "skin structure". <i>Nanoscale</i> , 2017 , 9, 18430-18437	7.7	8
236	Tungsten Nitride-Cobalt Anchored in N-Doped Ordered Porous Carbon as an Efficient Oxygen Reduction Reaction Electrocatalyst. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 60-66	4.5	14
235	Design and characterization of isothermal chambers filled with gradient-porous materials. <i>Journal of Thermal Science and Technology</i> , 2017 , 12, JTST0008-JTST0008	0.6	3
234	Co3O4 Nanoparticle-Decorated N-Doped Mesoporous Carbon Nanofibers as an Efficient Catalyst for Oxygen Reduction Reaction. <i>Catalysts</i> , 2017 , 7, 189	4	11
233	Glucose-assisted reduction achieved transparent p-type cuprous oxide thin film by a solution method. <i>Europhysics Letters</i> , 2016 , 115, 37005	1.6	4
232	Fabrication of PdCo Bimetallic Nanoparticles Anchored on Three-Dimensional Ordered N-Doped Porous Carbon as an Efficient Catalyst for Oxygen Reduction Reaction. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 20766-71	9.5	70
231	Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)Icore/shell electrodes. <i>Scientific Reports</i> , 2016 , 6, 21566	4.9	19
230	Cobalt phthalocyanine nanowires: Growth, crystal structure, and optical properties. <i>Crystal Research and Technology</i> , 2016 , 51, 154-159	1.3	22
229	Influence of Ligands on the Formation of Kesterite Thin Films for Solar Cells: A Comparative Study. <i>ChemSusChem</i> , 2016 , 9, 1032-41	8.3	19
228	Unexpected properties of gallium incorporated nickel oxide for electrochemical energy storage. <i>Electrochimica Acta</i> , 2016 , 191, 270-274	6.7	15
227	Cage-Type Highly Graphitic Porous Carbon-Co3O4 Polyhedron as the Cathode of Lithium-Oxygen Batteries. <i>ACS Applied Materials & Daterials & Materials &</i>	9.5	89
226	Takovite-derived 2-D Ni/Al double hydroxide monolayer and graphene hybrid electrodes for electrochemical energy storage applications with high volumetric capacitance. <i>Electrochimica Acta</i> , 2016 , 190, 521-530	6.7	23
225	Functionlized graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites. <i>Carbon</i> , 2016 , 101, 315-323	10.4	79

(2015-2016)

224	Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries. <i>ACS Applied Materials & District Materials</i> (1997) 4, 8, 8427-35	9.5	69
223	Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. <i>Carbon</i> , 2016 , 100, 151-157	10.4	155
222	High-Loading Nickel Cobaltate Nanoparticles Anchored on Three-Dimensional N-Doped Graphene as an Efficient Bifunctional Catalyst for Lithium-Oxygen Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 18060-8	9.5	54
221	(CH NH) PdCl : A Compound with Two-Dimensional Organic-Inorganic Layered Perovskite Structure. <i>Chemistry - A European Journal</i> , 2016 , 22, 2146-2152	4.8	34
220	A one step processed advanced interwoven architecture of Ni(OH)2 and Cu nanosheets with ultrahigh supercapacitor performance. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12144-12151	13	38
219	High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2016 , 22, 4915-23	4.8	98
218	Experimental and theoretical studies of the structure and optical properties of nickel phthalocyanine nanowires. <i>Materials Research Express</i> , 2016 , 3, 125002	1.7	10
217	Preparation of the TiO/Graphic Carbon Nitride Core-Shell Array as a Photoanode for Efficient Photoelectrochemical Water Splitting. <i>Langmuir</i> , 2016 , 32, 13322-13332	4	62
216	Constructing a multicomponent ordered mesoporous carbon for improved electrochemical performance induced by in-situ doping phosphorus. <i>Carbon</i> , 2016 , 104, 10-19	10.4	27
215	Improved mobility of sol-gel method processed transparent tin sulfide thin films. <i>Materials Letters</i> , 2016 , 178, 231-234	3.3	12
214	Highly conductive and flexible transparent films based on silver nanowire/chitosan composite. <i>RSC Advances</i> , 2016 , 6, 47552-47561	3.7	17
213	In-situ synthesis of monodisperse micro-nanospherical LiFePO 4 /carbon cathode composites for lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 318, 220-227	8.9	35
212	A nickel cobaltate nanoparticle-decorated hierarchical porous N-doped carbon nanofiber film as a binder-free self-supported cathode for nonaqueous LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9106-9112	13	66
211	Layered double hydroxide modified WO3 nanorod arrays for enhanced photoelectrochemical water splitting. <i>Applied Catalysis A: General</i> , 2016 , 528, 52-58	5.1	62
210	Significantly different mechanical properties and interfacial structures of Cu2ZnSn(S,Se)4 films prepared from metallic and sulfur-contained precursors. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 134, 389-394	6.4	6
209	Au coated amorphous indium zinc oxide (a-IZO) bilayer and its application as counter electrode for dye-sensitized solar cell. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 10194-10199	6.7	9
208	Raman analysis of gold on WSe2 single crystal film. <i>Materials Research Express</i> , 2015 , 2, 065009	1.7	14
207	Partial conversion of current collectors into nickel copper oxide electrode materials for high-performance energy storage devices. <i>ACS Applied Materials & Distriction of Communication and Partial Com</i>	9.5	27

206	A low-cost, ligand exchange-free strategy to synthesize large-grained Cu2ZnSnS4 thin-films without a fine-grain underlayer from nanocrystals. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17788-1779	9 1 3	22
205	Improvement in flexibility and volumetric performance for supercapacitor application and the effect of Nifle ratio on electrode behaviour. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7607-7615	13	24
204	Effects of triethanolamine on the morphology and phase of chemically deposited tin sulfide. <i>Materials Letters</i> , 2015 , 152, 40-44	3.3	21
203	Unexpected violet and blue light emission from amorphous indium zinc oxide (IZO) with silver nanoparticle embedment. <i>Optical Materials Express</i> , 2015 , 5, 1331	2.6	6
202	A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on hydrophobic carbon for lightweight and high-performance supercapacitors. <i>Scientific Reports</i> , 2015 , 5, 18108	4.9	26
201	Dopant chemical potential modulation on oxygen vacancies formation in In2O3: A comparative density functional study. <i>Chemical Physics Letters</i> , 2015 , 621, 141-145	2.5	3
2 00	Hybrid silver nanoparticle and transparent conductive oxide structure for silicon solar cell applications. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 399-403	2.5	2
199	Study on Phase Formation Mechanism of Non- and Near-Stoichiometric Cu2ZnSn(S,Se)4 Film Prepared by Selenization of CuBnInB Precursors. <i>Chemistry of Materials</i> , 2014 , 26, 2005-2014	9.6	71
198	Low-contact-resistance graphene devices with nickel-etched-graphene contacts. ACS Nano, 2014, 8, 994	-100	143
197	Substrate-assisted self-organization of Nitu spherical double hydroxide (SDH) and its excellent pseudo-capacitive performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4660	13	17
196	Organic dyes incorporating a thiophene or furan moiety for efficient dye-sensitized solar cells. <i>Dyes and Pigments</i> , 2014 , 104, 75-82	4.6	20
195	Synthesis, Characterization and Hard Ferromagnetism in FePt/ZnO Nanocomposites with Ultra-Small Size. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-5	2	2
194	CZTS-based materials and interfaces and their effects on the performance of thin film solar cells. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 08, 735-762	2.5	100
193	Temperature effect on the binder-free nickel copper oxide nanowires with superior supercapacitor performance. <i>Nanoscale</i> , 2014 , 6, 12981-9	7.7	31
192	Directly Grown K0.33WO3 Nanosheet Film Electrode for Fast Direct Electron Transfer of Protein. <i>ChemElectroChem</i> , 2014 , 1, 463-470	4.3	3
191	Significant improvement in electronic properties of transparent amorphous indium zinc oxide through yttrium doping. <i>Europhysics Letters</i> , 2014 , 106, 17006	1.6	2
190	Novel Hybrid Electrode Using Transparent Conductive Oxide and Silver Nanoparticle Mesh for Silicon Solar Cell Applications. <i>Energy Procedia</i> , 2014 , 55, 670-678	2.3	12
189	Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. <i>Chemical Communications</i> , 2013 , 49, 7451-3	5.8	167

(2012-2013)

188	Development of ZnO Nanostructured Films via Sodium Chloride Solution and Investigation of Its Growth Mechanism and Optical Properties. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1972-197	77 ^{3.8}	1
187	Room-temperature ferromagnetism in ZnO-encapsulated 1.9 nm FePt3 nanoparticle-composite thin films with giant interfacial anisotropy. <i>Advanced Materials</i> , 2013 , 25, 1639-45	24	8
186	A study on dramatically enhanced capacitance of graphene-decorated hierarchically porous nickelian heterogenite for energy storage application. <i>Electrochimica Acta</i> , 2013 , 114, 543-550	6.7	6
185	Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 10574-82	9.5	182
184	Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating. <i>Applied Physics Letters</i> , 2013 , 102, 111901	3.4	10
183	Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications. Journal of Materials Chemistry A, 2013 , 1, 7927	13	58
182	Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. <i>Small</i> , 2013 , 9, 3153-60	11	68
181	Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application. <i>Journal of Power Sources</i> , 2013 , 240, 713-720	8.9	66
180	Cu2ZnSnS4(CZTS) Application in TiO2Solar Cell as Dye. <i>ECS Journal of Solid State Science and Technology</i> , 2013 , 2, Q95-Q98	2	24
179	Cobalt monoxide-doped porous graphitic carbon microspheres for supercapacitor application. <i>Scientific Reports</i> , 2013 , 3, 2925	4.9	41
178	Properties of low indium content Al incorporated IZO (indium zinc oxide) deposited at room temperature. <i>Journal of Applied Physics</i> , 2012 , 112, 083709	2.5	16
177	Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors. Journal of the Electrochemical Society, 2012 , 159, A651-A656	3.9	264
176	Influence of sintering temperature on screen printed Cu2ZnSnS4 (CZTS) films. <i>Journal of Alloys and Compounds</i> , 2012 , 539, 237-241	5.7	33
175	Heat-field-stimulated decomposition reaction in Cu2ZnSnS4. <i>Acta Materialia</i> , 2012 , 60, 6732-6741	8.4	11
174	Temperature-dependent exciton luminescence from an Au-nanopatternBoated ZnCdO film. <i>Europhysics Letters</i> , 2012 , 99, 27003	1.6	6
173	Cobalt-mediated crystallographic etching of graphite from defects. <i>Small</i> , 2012 , 8, 2515-23	11	21
172	Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. <i>Energy and Environmental Science</i> , 2012 , 5, 7936	35.4	1813
171	A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes. <i>Advanced Functional Materials</i> , 2012 , 22, 1272-1278	15.6	739

170	Improvement of GaN light-emitting diodes with surface-treated Al-doped ZnO transparent Ohmic contacts by holographic photonic crystal. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 107, 809-812	2.6	10
169	Enhancement of bandgap emission of Pt-capped MgZnO films: important role of light extraction versus exciton-plasmon coupling. <i>Optics Express</i> , 2012 , 20, 14556-63	3.3	16
168	Conductivity mechanism of nanosized silver layer embedded in indium zinc oxide. <i>Journal of Applied Physics</i> , 2012 , 111, 083712	2.5	9
167	Unexpected improved conductivity and systematic low-temperature anomalies of a new germanium zinc indium oxide system. <i>Europhysics Letters</i> , 2012 , 100, 17003	1.6	1
166	Photoluminescence characteristics of ZnCdO/ZnO single quantum well grown by pulsed laser deposition. <i>Applied Physics Letters</i> , 2011 , 98, 121903	3.4	17
165	The Sol-Gel-Derived Nickel-Cobalt Oxides with High Supercapacitor Performances. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A695	3.9	85
164	Cu2ZnSnS4 synthesized through a green and economic process. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 9627-9630	5.7	55
163	Low-Temperature Growth of SnO2 Nanorod Arrays and Tunable npt Sensing Response of a ZnO/SnO2 Heterojunction for Exclusive Hydrogen Sensors. <i>Advanced Functional Materials</i> , 2011 , 21, 268	3 6 5268	6 ¹⁸⁷
162	Epitaxial Growth of Branched Fe2O3/SnO2 Nano-Heterostructures with Improved Lithium-Ion Battery Performance. <i>Advanced Functional Materials</i> , 2011 , 21, 2439-2445	15.6	408
161	Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. <i>Advanced Materials</i> , 2011 , 23, 2076-81	24	1176
160	Energy Storage: Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials (Adv. Mater. 18/2011). <i>Advanced Materials</i> , 2011 , 23, 207	7 <mark>5-2</mark> 07	5 ²³
159	Low Temperature Synthesized Quaternary Chalcogenide Cu2ZnSnS4 from Nano-Crystallite Binary Sulfides. <i>Journal of the Electrochemical Society</i> , 2011 , 158, H800	3.9	33
158	Improved mobility and conductivity of an Al2O3 incorporated indium zinc oxide system. <i>Journal of Applied Physics</i> , 2011 , 110, 023709	2.5	13
157	Large-diameter graphene nanotubes synthesized using Ni nanowire templates. <i>Nano Letters</i> , 2010 , 10, 4844-50	11.5	94
156	Improving the morphological stability of a polycrystalline tungsten nanowire with a carbon shell. <i>Nanotechnology</i> , 2010 , 21, 195701	3.4	9
155	Photovoltaic Behavior of Nanocrystalline SnS/TiO2. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3256-325	5 9 .8	76
154	Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires. <i>Nanotechnology</i> , 2010 , 21, 445706	3.4	42
153	ZnCdO/ZnO Coaxial Multiple Quantum Well Nanowire Heterostructures and Optical Properties. Journal of Physical Chemistry C, 2010 , 114, 3863-3868	3.8	28

(2009-2010)

152	Abrupt resistivity decrease and other unexpected phenomena in a doped amorphous ternary metal oxide. <i>Applied Physics Letters</i> , 2010 , 97, 092106	3.4	10
151	Capacitance decay of nanoporous nickel hydroxide. <i>Journal of Power Sources</i> , 2010 , 195, 6977-6981	8.9	138
150	Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. <i>Advanced Materials</i> , 2010 , 22, 403-6	24	63
149	Evolution of resonant Raman scattering spectra of ZnO crystallites upon post-growth thermal annealing. <i>Journal of Crystal Growth</i> , 2010 , 312, 527-531	1.6	2
148	Properties of ZnO influenced by P concentration. <i>Journal of Applied Physics</i> , 2009 , 106, 123522	2.5	10
147	Room temperature ferromagnetism of ZnO nanocrystals in amorphous ZnOAl2O3 matrix. <i>Applied Physics Letters</i> , 2009 , 95, 072501	3.4	19
146	Ohmic Contact Properties and Annealing Effect for Au/Ni on p-Type P-Doped ZnO. <i>Journal of the Electrochemical Society</i> , 2009 , 156, H740	3.9	1
145	Photoluminescence of InAs quantum dots embedded in graded InGaAs barriers. <i>Journal of Nanoparticle Research</i> , 2009 , 11, 1947-1955	2.3	1
144	Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp alpha-Fe(2)O(3) Nanoflakes. <i>Nanoscale Research Letters</i> , 2009 , 4, 1115-1119	5	16
143	Growth mechanism and optical properties of In2O3 nanorods synthesized on ZnO/GaAs (111) substrate. <i>Journal of Crystal Growth</i> , 2009 , 311, 268-271	1.6	17
142	The characterization and application of p-type semiconducting mesoporous carbon nanofibers. <i>Carbon</i> , 2009 , 47, 1841-1845	10.4	28
141	Storage performance of LiFePO4 nanoplates. <i>Journal of Materials Chemistry</i> , 2009 , 19, 605-610		241
140	Large-Surface-Area Nanowall SnS Films Prepared by Chemical Bath Deposition. <i>Journal of the Electrochemical Society</i> , 2009 , 156, H157	3.9	17
139	Hierarchical assembly of ZnO nanostructures on SnO(2) backbone nanowires: low-temperature hydrothermal preparation and optical properties. <i>ACS Nano</i> , 2009 , 3, 3069-76	16.7	242
138	Surface optical phonon and A1(LO) in ZnO submicron crystals probed by Raman scattering: Effects of morphology and dielectric coating. <i>Journal of Applied Physics</i> , 2009 , 105, 053507	2.5	21
137	White Light from an Indium Zinc Oxide/Porous Silicon Light-Emitting Diode. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 751-754	3.8	20
136	Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. <i>Nanotechnology</i> , 2009 , 20, 085203	3.4	286
135	The morphology of Au@MgO nanopeapods. <i>Nanotechnology</i> , 2009 , 20, 455603	3.4	13

134	Morphology Controllable Synthesis of Fe2O3 1D Nanostructures: Growth Mechanism and Nanodevice Based on Single Nanowire. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10784-10788	3.8	72
133	Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition. <i>Nanotechnology</i> , 2008 , 19, 255607	3.4	18
132	Effects of oxygen on low-temperature growth and band alignment of ZnOtaN heterostructures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1462-1468	2.9	22
131	GaN and ZnO freestanding micromechanical structures on silicon-on-insulator substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1168-1172	1.6	1
130	The Influence of In/Cu Ratio on Electrical Properties of CuO:In Thin Films Prepared by Plasma-Enhanced CVD. <i>Chemical Vapor Deposition</i> , 2008 , 14, 9-13		4
129	Ferromagnetism in ZnO Nanowires Derived from Electro-deposition on AAO Template and Subsequent Oxidation. <i>Advanced Materials</i> , 2008 , 20, 1170-1174	24	127
128	Observation of interfacial reactions and recrystallization of extrinsic phases in epitaxial grown ZnO/GaAs heterostructures. <i>Journal of Crystal Growth</i> , 2008 , 310, 4305-4308	1.6	7
127	Unexpected influence of substrate temperature on the properties of P-doped ZnO. <i>Acta Materialia</i> , 2008 , 56, 5066-5070	8.4	13
126	Annealing effects on electrical and optical properties of ZnO thin-film samples deposited by radio frequency-magnetron sputtering on GaAs (001) substrates. <i>Journal of Applied Physics</i> , 2007 , 102, 06350	7 .5	26
125	Theoretical and experimental studies on oxygen vacancy in p-type ZnO. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 417-420	2.8	9
124	Surface micromachined freestanding ZnO microbridge and cantilever structures on Si(111) substrates. <i>Applied Physics Letters</i> , 2007 , 90, 091913	3.4	9
123	Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering. <i>Journal of Applied Physics</i> , 2007 , 102, 083529	2.5	38
122	Radio-frequency magnetron sputtering and wet thermal oxidation of ZnO thin film. <i>Journal of Applied Physics</i> , 2007 , 102, 043530	2.5	13
121	ZnO homojunctions grown by cosputtering ZnO and Zn3P2 targets. <i>Applied Physics Letters</i> , 2006 , 89, 021112	3.4	8
120	Mechanical properties of CuAlD thin films prepared by plasma-enhanced chemical vapor depositiona). <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2006 , 24, 537-54	1 ^{2.9}	5
119	Luminescence properties of ZnO layers grown on Si-on-insulator substrates. <i>Applied Physics Letters</i> , 2006 , 89, 141901	3.4	44
118	Nanoscaled electrical homogeneity of indium zinc oxide films. <i>Applied Physics Letters</i> , 2006 , 88, 093111	3.4	7
117	Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering. <i>Applied Physics Letters</i> , 2006 , 88, 132114	3.4	51

(2005-2006)

116	Transparent indium zinc oxide ohmic contact to phosphor-doped n-type zinc oxide. <i>Applied Physics Letters</i> , 2006 , 88, 101901	3.4	44
115	Properties of p-type and n-type ZnO influenced by P concentration. <i>Applied Physics Letters</i> , 2006 , 89, 251102	3.4	45
114	Photoluminescence and multiphonon resonant Raman scattering in low-temperature grown ZnO nanostructures. <i>Applied Physics Letters</i> , 2006 , 89, 071922	3.4	93
113	Nanoparticle composites: FePt with wide-band-gap semiconductor. <i>Journal of Magnetism and Magnetic Materials</i> , 2006 , 303, 323-328	2.8	10
112	Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. <i>Sensors and Actuators B: Chemical</i> , 2006 , 115, 247-251	8.5	368
111	Lattice dynamics and electrical properties of wurtzite ZnO determined by a density functional theory method. <i>Journal of Crystal Growth</i> , 2006 , 287, 199-203	1.6	33
110	Characterization and optical properties of ZnSe prepared by hydrothermal method. <i>Journal of Crystal Growth</i> , 2006 , 288, 96-99	1.6	14
109	First-Principles Study of Bipolar Dopability in the CuInO2 Transparent Semiconductor. <i>Chemistry of Materials</i> , 2005 , 17, 5529-5537	9.6	12
108	Dopant Sources Choice for Formation of p-Type ZnO: Phosphorus Compound Sources. <i>Chemistry of Materials</i> , 2005 , 17, 852-855	9.6	36
107	A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3InO system. <i>Journal of Applied Physics</i> , 2005 , 97, 063706	2.5	68
106	XPS study of thermal effects on FePt and FePtAg nanoparticles. <i>IEEE Transactions on Magnetics</i> , 2005 , 41, 3367-3369	2	5
105	Sputtered deposited nanocrystalline ZnO films: A correlation between electrical, optical and microstructural properties. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 1641-1646	2.6	39
104	Dynamic thermal degradation studies on amorphous carbon thin films. <i>Journal of Thermal Analysis and Calorimetry</i> , 2005 , 79, 677-683	4.1	9
103	Electronic properties of barium chalcogenides from first-principles calculations: Tailoring wide-band-gap II-VI semiconductors. <i>Physical Review B</i> , 2005 , 71,	3.3	46
102	High mobility undoped amorphous indium zinc oxide transparent thin films. <i>Journal of Applied Physics</i> , 2005 , 98, 073703	2.5	53
101	The influence of CuAl ratio on properties of chemical-vapor-deposition-grown p-type CuAlD transparent semiconducting films. <i>Journal of Applied Physics</i> , 2005 , 98, 033707	2.5	52
100	Study on anomalous n-type conduction of P-doped ZnO using P2O5 dopant source. <i>Applied Physics Letters</i> , 2005 , 86, 212105	3.4	23
99	First-principles study of Sn and Ca doping in CuInO2. <i>Physical Review B</i> , 2005 , 72,	3.3	20

Study on p -type ZnO: a potential new source of solid state lighting **2005**, 5941, 83

97	Cellular distribution of GPR14 and the positive inotropic role of urotensin II in the myocardium in adult rat. <i>Journal of Applied Physiology</i> , 2004 , 97, 2228-35	3.7	29
96	FePt and Fe nanocomposite by annealing self-assembled FePt nanoparticles. <i>Journal of Applied Physics</i> , 2004 , 95, 6735-6737	2.5	25
95	Reactions of ultrathin hard amorphous carbon (a-C) films under microbeam laser processing. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2004 , 22, 2239-2245	2.9	2
94	Quartz crystal microbalance coated with solgel-derived indiumlin oxide thin films as gas sensor for NO detection. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 236, 23-30	5.1	37
93	The study of bonding composition of CNx film by thermal degradation method. <i>Carbon</i> , 2004 , 42, 537-5	5 45 0.4	21
92	Evidence of nitric-oxide-induced surface band bending of indium tin oxide. <i>Journal of Applied Physics</i> , 2004 , 95, 6273-6276	2.5	13
91	Quartz Crystal Microbalance Coated with Sol-gel-derived Thin Films as Gas Sensor for NO Detection. <i>Sensors</i> , 2003 , 3, 404-414	3.8	12
90	Effects of aluminum on the properties of p-type CuAlD transparent oxide semiconductor prepared by reactive co-sputtering. <i>Thin Solid Films</i> , 2003 , 445, 299-303	2.2	43
89	A room temperature indium tin oxide/quartz crystal microbalance gas sensor for nitric oxide. Sensors and Actuators B: Chemical, 2003, 93, 175-180	8.5	37
88	Investigation of mechanical properties of transparent conducting oxide thin films. <i>Thin Solid Films</i> , 2003 , 443, 60-65	2.2	100
87	Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition. Journal of Applied Physics, 2003 , 93, 1477-1481	2.5	137
86	ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. <i>Sensors and Actuators B: Chemical</i> , 2002 , 87, 159-167	8.5	49
85	Theoretical study of Cr diffusion in Coll ralloy thin film recording media. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 7-13	2.9	7
84	Kinetics and mechanisms of laser-induced decompositions of hydrogenated amorphous carbon films on magnetic hard disks. <i>Journal of Applied Physics</i> , 2002 , 92, 2962-2968	2.5	7
83	Kinetics and mechanisms of the thermal degradation of amorphous carbon films. <i>Journal of Applied Physics</i> , 2002 , 91, 9646	2.5	8
82	CRYSTALLIZATION AND OPTOELECTRONIC PROPERTIES OF INDIUM-ZINC-OXIDE THIN FILMS ANNEALED IN ARGON AND VACUUM. <i>International Journal of Modern Physics B</i> , 2002 , 16, 302-307	1.1	1
81	SIMS DEPTH PROFILING ANALYSIS OF Cu/Ta/SiO2 INTERFACIAL DIFFUSION AT DIFFERENT ANNEALING TEMPERATURE. <i>International Journal of Modern Physics B</i> , 2002 , 16, 322-327	1.1	4

(2001-2002)

80	CRYSTAL STRUCTURE AND PROPERTIES OF CU-AL-O THIN FILMS. <i>International Journal of Modern Physics B</i> , 2002 , 16, 308-313	1.1	3		
79	CRYSTAL STRUCTURE AND GAS SENSING PROPERTIES OF Cu-DOPED ZINC OXIDE. <i>International Journal of Modern Physics B</i> , 2002 , 16, 314-321	1.1	11		
78	Evaluation of commercial electroless nickel chemicals for a low cost wafer bumping process. <i>Semiconductor Science and Technology</i> , 2002 , 17, 911-917	1.8	3		
77	Thermal decomposition kinetics of amorphous carbon nitride and carbon films. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 1697-1708	1.8	14		
76	X-RAY ANALYSIS AND MICROHARDNESS CHARACTERIZATION OF TIN/TI MULTILAYERS. International Journal of Modern Physics B, 2002 , 16, 275-280	1.1	1		
75	NANO-CRYSTAL ALLOY AND ALLOY-OXIDE COATINGS AND THEIR HIGH-TEMPERATURE CORROSION PROPERTIES. <i>International Journal of Modern Physics B</i> , 2002 , 16, 128-136	1.1	8		
74	Crystal Growth of Al-doped ZnO Films under Different Sputtering Conditions. <i>International Journal of Modern Physics B</i> , 2002 , 16, 287-293	1.1	2		
73	Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition. <i>Applied Physics Letters</i> , 2002 , 81, 4218-4220	3.4	89		
72	Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). <i>Polymer Testing</i> , 2001 , 20, 693-701	4.5	103		
71	Optical and electrical properties of p-type transparent conducting CuAlD thin films prepared by plasma enhanced chemical vapor deposition. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2001 , 85, 131-134	3.1	24		
70	Effects of nominal intermediate layer on microstructure and magnetic property in CoCrPtTa/CrTi thin films. <i>Materials Science and Engineering C</i> , 2001 , 16, 69-73	8.3			
69	Mo and W doping effects on CoCrPt thin films. <i>Materials Science and Engineering C</i> , 2001 , 16, 75-79	8.3			
68	Annealing effects of tantalum thin films sputtered on [001] silicon substrate. <i>Materials Science and Engineering C</i> , 2001 , 16, 85-89	8.3	31		
67	SiO2 modified Co-ferrite with high coercivity. <i>Journal of Magnetism and Magnetic Materials</i> , 2001 , 226-230, 1382-1384	2.8	9		
66	Laser and thermal induced micro-structural changes and decomposition of hydrogenated carbon films. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 2989-2999	1.8	5		
65	Enhanced coercivity by substrate bias configuration in Co-based alloy thin film. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2001 , 19, 379-382	2.9			
64	Study of copper silicide retardation effects on copper diffusion in silicon. <i>Journal of Applied Physics</i> , 2001 , 90, 3822-3824	2.5	18		
63	63 Surface photovoltaic properties of sputtered Mo/Si multilayers. <i>Journal of Applied Physics</i> , 2001 , 90, 342 2 -3426				

62	Oxidation behaviour of Cu thin films on Si wafer at 175월00˚C. <i>Materials Letters</i> , 2001 , 51, 78-84	3.3	43
61	Characterisation of high temperature corrosion products on FeAl intermetallics by XPS. <i>Corrosion Science</i> , 2001 , 43, 1891-1903	6.8	12
60	Electrical characterization and metallurgical analysis of Pd-containing multilayer contacts on GaN. <i>Journal of Applied Physics</i> , 2001 , 90, 1242-1249	2.5	30
59	Annealing effects of tantalum films on Si and SiO2/Si substrates in various vacuums. <i>Journal of Applied Physics</i> , 2001 , 90, 416-420	2.5	45
58	Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. <i>Journal of Micromechanics and Microengineering</i> , 2001 , 11, 20-26	2	183
57	High-Conductivity p-Type Transparent Copper Aluminum Oxide Film Prepared by Plasma-Enhanced MOCVD. <i>Chemical Vapor Deposition</i> , 2000 , 6, 285-288		35
56	Effects of surface smoothness and deposition temperature of floating gates in flash memory devices to oxide/nitride/oxide interpoly dielectric breakdown. <i>Journal of Materials Science Letters</i> , 2000 , 19, 817-821		2
55	Effect of orientation ratio on recording performance for longitudinal thin film media. <i>IEEE Transactions on Magnetics</i> , 2000 , 36, 2291-2293	2	6
54	Effect of magnetic anisotropy distribution in longitudinal thin film media. <i>Journal of Applied Physics</i> , 2000 , 87, 5535-5537	2.5	13
53	Integrity of Copper-Tantalum Nitride Metallization under Different Ambient Conditions. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 2312	3.9	8
52	Oxidation behaviour of stainless steel a coatings produced by co-sputtering and reactive sputtering. <i>Materials Letters</i> , 2000 , 46, 53-59	3.3	8
51	Oxidation behaviour of FeAl intermetallics. The effects of Y and/or Zr on isothermal oxidation kinetics. <i>Intermetallics</i> , 2000 , 8, 769-779	3.5	58
50	Electrical characterization, metallurgical investigation, and thermal stability studies of (Pd, Ti, Au)-based ohmic contacts. <i>Journal of Applied Physics</i> , 2000 , 87, 2437-2444	2.5	22
49	Plasma etching optimization of oxide/nitride/oxide interpoly dielectric breakdown time in flash memory devices. <i>IEEE Transactions on Semiconductor Manufacturing</i> , 2000 , 13, 386-389	2.6	
48	Nanocrystalline p-type transparent CuAlD semiconductor prepared by chemical-vapor deposition with Cu(acac)2 and Al(acac)3 precursors. <i>Applied Physics Letters</i> , 2000 , 76, 3959-3961	3.4	118
47	High-Conductivity p-Type Transparent Copper Aluminum Oxide Film Prepared by Plasma-Enhanced MOCVD 2000 , 6, 285		1
46	Frequency shift in the photoluminescence of nanometric SiOx: surface bond contraction and oxidation. <i>Journal of Physics Condensed Matter</i> , 1999 , 11, L547-L550	1.8	18
45	Enhancement of hot-carrier injection resistance for deep submicron transistor gate dielectric with a powered solenoid. <i>Applied Physics Letters</i> , 1999 , 75, 4192-4194	3.4	

44	Surface smoothing of floating gates in flash memory devices via surface nitrogen and carbon incorporation. <i>Applied Physics Letters</i> , 1999 , 75, 355-357	3.4	7
43	Structure and magnetization of MnSb thin films deposited at different substrate temperatures. Journal of Applied Physics, 1999 , 85, 7340-7344	2.5	17
42	Phase change of sputtered LaNi 5 thin films due to hydrogenation. <i>Thin Solid Films</i> , 1999 , 339, 78-81	2.2	9
41	PdNi thin films grown on porous Al 2 O 3 substrates by metalorganic chemical vapor deposition for hydrogen sensing. <i>Thin Solid Films</i> , 1999 , 345, 217-221	2.2	22
40	Interaction between thin-film tin oxide gas sensor and five organic vapors. <i>Sensors and Actuators B: Chemical</i> , 1999 , 54, 232-235	8.5	79
39	Precision sintering of slip cast components. <i>Journal of Materials Processing Technology</i> , 1999 , 95, 201-20	D § .3	1
38	A Study on the Effect of Incorporating Nitrogen Ions on Titanium Disilicide Thin Film Formation for ULSI Applications. <i>Journal of Materials Science Letters</i> , 1999 , 18, 743-745		
37	Evaluation of silicon nitride and silicon carbide as efficient polysilicon grain-growth inhibitors. Journal of Materials Science Letters, 1999 , 18, 1427-1431		4
36	Anisothermal Oxidation of Micro-Crystalline Ni-20Cr-5Al Alloy Coating at 850-1280°C. <i>Scripta Materialia</i> , 1998 , 38, 1057-1063	5.6	9
35	Evaluation of the dielectric breakdown of reoxidized nitrided oxide (ONO) in flash memory devices using constant current-stressing technique. <i>Microelectronics Reliability</i> , 1998 , 38, 1439-1446	1.2	7
34	The effect of Al3+, Na+ and Li+ impurities on the charging ability of single-crystalline quartz under electron beam irradiation. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1998 , 52, 12-16	3.1	6
33	Motion compensation for five-axis rapid prototyping system. Rapid Prototyping Journal, 1998 , 4, 68-76	3.8	5
32	Variation of the relative permittivity of charged dielectrics. <i>Applied Physics Letters</i> , 1998 , 72, 317-319	3.4	8
31	Morphology and magnetic analysis of MnSb films grown by hot-wall epitaxy. <i>Journal of Applied Physics</i> , 1998 , 84, 973-977	2.5	8
30	Dynamics aspects of the charging behaviour of polymers under focused electron beam irradiation. Journal of Physics Condensed Matter, 1997 , 9, 9289-9298	1.8	7
29	Space-charge dynamics of polymethylmethacrylate under electron beam irradiation. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 5027-5031	1.8	3
28	Discharging behaviour on insulator surfaces in vacuum: a scanning electron microscopy observation. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 1631-1636	1.8	5
27	Insulator size effect on electron-irradiated quartz. <i>IEEE Transactions on Dielectrics and Electrical Insulation</i> , 1997 , 4, 88-91	2.3	5

26	The trapping and distribution of charge in polarized polymethylmethacrylate under electron-beam irradiation. <i>Journal Physics D: Applied Physics</i> , 1997 , 30, 1561-1565	3	2
25	Constant current-stress-induced breakdown of reoxidized nitrided oxide (ONO) in flash memory devices 1997 ,		2
24	Secondary and backscattered electron yields of polymer surface under electron beam irradiation. <i>Applied Surface Science</i> , 1997 , 119, 169-175	6.7	28
23	The particle size of latexes from dispersion polymerization of styrene using poly(ethylene oxide) macromonomer as a polymerizable stabilizer. <i>Journal of Polymer Science Part A</i> , 1997 , 35, 3575-3583	2.5	29
22	Backscattering Factor for KLL Auger Yield from FilmBubstrate Systems. <i>Surface and Interface Analysis</i> , 1996 , 24, 15-22	1.5	7
21	A multi-technique study of the surface preparation of InSb substrate and subsequently grown CdTe films by molecular beam epitaxy. <i>Journal of Materials Science: Materials in Electronics</i> , 1996 , 7, 23	2.1	4
20	A time-resolved current method for the investigation of charging ability of insulators under electron beam irradiation. <i>Journal of Applied Physics</i> , 1996 , 79, 7123-7128	2.5	59
19	Charging of deformed semicrystalline polymers observed with a scanning electron microscope. <i>IEEE Transactions on Dielectrics and Electrical Insulation</i> , 1995 , 2, 1123-1131	2.3	
18	New observation of trapped charge transportation on circularly bound polymethylmethacrylate surface. <i>Applied Physics Letters</i> , 1995 , 67, 2243-2245	3.4	11
17	Determination of charge distribution volume in electron irradiated insulators by scanning electron microscope. <i>Journal of Applied Physics</i> , 1995 , 78, 3714-3718	2.5	9
16	The charging behaviour and internal electric field of PMMA irradiated by a kiloelectronvolt electron beam. <i>Journal of Physics Condensed Matter</i> , 1995 , 7, 1129-1137	1.8	14
15	Charging of deformed semicrystalline polymers observed with a scanning electron microscope. <i>IEEE Transactions on Dielectrics and Electrical Insulation</i> , 1995 , 2, 1123-1131	2.3	9
14	Classical electron trajectory in scanning electron microscope mirror image method. <i>Journal of Applied Physics</i> , 1994 , 76, 806-809	2.5	13
13	Dependence of charging on crystallographic orientations of an as-grown Equartz. <i>Journal of Applied Physics</i> , 1994 , 76, 1352-1354	2.5	5
12	Effect of conjugated bonds on the charging of insulating polymers. <i>Journal of Applied Physics</i> , 1994 , 76, 2414-2418	2.5	9
11	Present limits to the calculation of auger line intensities for filmBubstrate systems. <i>Surface and Interface Analysis</i> , 1994 , 21, 199-205	1.5	6
10	Theory and computation for imaging in scanning transmission microscopy considering partial coherence in illumination. <i>Ultramicroscopy</i> , 1994 , 55, 373-381	3.1	1
9	A novel scanning electron microscope method for the investigation of charge trapping in insulators. <i>Journal of Applied Physics</i> , 1994 , 75, 449-453	2.5	15

LIST OF PUBLICATIONS

8	Dielectric polarization relaxation measurement in \(\mathbb{E}\)iO2 by means of a scanning electron microscope technique. \(Journal of Applied Physics\), \(1993\), 74, 1250-1255	2.5	12	
7	Charge trapping on different cuts of a single-crystalline BiO2. <i>Journal of Applied Physics</i> , 1993 , 74, 1944	-1 .9 48	38	
6	Fast computer simulation of transmission electron microscope images showing one-dimensional features and the effects of finite extent of the source on the images. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated</i>	1.2	1	
5	Equipment, 1990, 298, 283-288 The measurement of narrow domain-wall widths in SmCo5 using differential phase contrast electron microscopy. <i>Journal of Applied Physics</i> , 1988, 64, 1338-1342	2.5	26	
4	On the use of divergent wall images in the fresnel mode of Lorentz microscopy for the measurement of the widths of very narrow domain walls. <i>Journal of Magnetism and Magnetic Materials</i> , 1987 , 67, 4-8	2.8	21	
3	Breakdown of reoxidized nitrided oxide (ONO) in flash memory devices upon current stressing		1	
2	Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. <i>Nano Research</i> ,1	10	4	
1	Threshold voltage modulation in monolayer MoS2 field-effect transistors via selective gallium ion beam irradiation. <i>Science China Materials</i> ,1	7.1	О	