
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2591083/publications.pdf Version: 2024-02-01

FDWAN REZADD

#	Article	IF	CITATIONS
1	Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Movement Disorders, 2017, 32, 1264-1310.	3.9	608
2	Lewy body extracts from Parkinson disease brains trigger αâ€ s ynuclein pathology and neurodegeneration in mice and monkeys. Annals of Neurology, 2014, 75, 351-362.	5.3	521
3	A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature, 2016, 539, 284-288.	27.8	492
4	Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies. Nature Reviews Neuroscience, 2001, 2, 577-588.	10.2	472
5	Relationship between the Appearance of Symptoms and the Level of Nigrostriatal Degeneration in a Progressive 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease. Journal of Neuroscience, 2001, 21, 6853-6861.	3.6	437
6	Targeting α-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurology, The, 2015, 14, 855-866.	10.2	393
7	Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Progress in Neurobiology, 2015, 132, 96-168.	5.7	379
8	Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nature Medicine, 2003, 9, 762-767.	30.7	370
9	Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2018, 17, 660-688.	46.4	370
10	Priorities in Parkinson's disease research. Nature Reviews Drug Discovery, 2011, 10, 377-393.	46.4	364
11	Increased D1dopamine receptor signaling in levodopa-induced dyskinesia. Annals of Neurology, 2005, 57, 17-26.	5.3	356
12	Chronic dopaminergic stimulation in Parkinson's disease: from dyskinesias to impulse control disorders. Lancet Neurology, The, 2009, 8, 1140-1149.	10.2	337
13	Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet, The, 2014, 384, 545-555.	13.7	336
14	Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends in Neurosciences, 2003, 26, 215-221.	8.6	309
15	Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9611-9616.	7.1	309
16	Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurology, The, 2017, 16, 238-250.	10.2	280
17	Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nature Medicine, 2016, 22, 138-145.	30.7	274
18	Lysosomal impairment in Parkinson's disease. Movement Disorders, 2013, 28, 725-732.	3.9	270

#	Article	IF	CITATIONS
19	Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Annals of Neurology, 2012, 72, 816-820.	5.3	249
20	High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neuroscience Letters, 1996, 215, 17-20.	2.1	244
21	Levodopaâ€induced dyskinesia in Parkinson disease: Current and evolving concepts. Annals of Neurology, 2018, 84, 797-811.	5.3	225
22	Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain, 2008, 131, 3380-3394.	7.6	223
23	Maladaptive plasticity of serotonin axon terminals in levodopaâ€induced dyskinesia. Annals of Neurology, 2010, 68, 619-628.	5.3	221
24	Enriched Environment Confers Resistance to 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine and Cocaine: Involvement of Dopamine Transporter and Trophic Factors. Journal of Neuroscience, 2003, 23, 10999-11007.	3.6	206
25	Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior. Neuron, 2014, 84, 1170-1182.	8.1	200
26	Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus. Journal of Neuroscience, 2015, 35, 6667-6688.	3.6	200
27	Compensatory mechanisms in experimental and human Parkinsonism: towards a dynamic approach. Progress in Neurobiology, 1998, 55, 93-116.	5.7	193
28	Absence of MPTP-Induced Neuronal Death in Mice Lacking the Dopamine Transporter. Experimental Neurology, 1999, 155, 268-273.	4.1	190
29	Direct Targeted Quantitative Molecular Imaging of Neurotransmitters in Brain Tissue Sections. Neuron, 2014, 84, 697-707.	8.1	188
30	Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: Targets for disease modification?. Progress in Neurobiology, 2014, 118, 1-18.	5.7	185
31	M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron, 2015, 88, 762-773.	8.1	183
32	Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain, 2001, 124, 546-557.	7.6	180
33	Effects of I-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Research, 1998, 787, 157-160.	2.2	177
34	Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Neuropharmacology, 2005, 48, 503-516.	4.1	175
35	A chronic MPTP model reproducing the slow evolution of Parkinson's disease: evolution of motor symptoms in the monkey. Brain Research, 1997, 766, 107-112.	2.2	157
36	Deleterious effects of minocycline in animal models of Parkinson's disease and Huntington's disease. European Journal of Neuroscience, 2004, 19, 3266-3276.	2.6	156

#	Article	IF	CITATIONS
37	Animal models of Parkinson's disease: Limits and relevance to neuroprotection studies. Movement Disorders, 2013, 28, 61-70.	3.9	156
38	Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine, 2015, 7, 302ra134.	12.4	148
39	Comprehensive mapping of neurotransmitter networks by MALDI–MS imaging. Nature Methods, 2019, 16, 1021-1028.	19.0	148
40	Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases. Autophagy, 2016, 12, 472-483.	9.1	146
41	Ambroxol effects in glucocerebrosidase and αâ€synuclein transgenic mice. Annals of Neurology, 2016, 80, 766-775.	5.3	143
42	TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nature Neuroscience, 2019, 22, 65-77.	14.8	143
43	Comparison of eight clinical rating scales used for the assessment of MPTP-induced parkinsonism in the Macaque monkey. Journal of Neuroscience Methods, 2000, 96, 71-76.	2.5	142
44	A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiology of Disease, 2010, 39, 352-361.	4.4	142
45	Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with <scp>l</scp> -dopa–induced dyskinesia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21824-21829.	7.1	141
46	Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Progress in Neurobiology, 2017, 155, 171-193.	5.7	137
47	Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms. European Journal of Neuroscience, 1999, 11, 2167-2170.	2.6	136
48	Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain, 2020, 143, 1462-1475.	7.6	135
49	Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracelullar striatal dopamine. Neurobiology of Disease, 2006, 22, 586-598.	4.4	134
50	Modeling Parkinson's Disease in Primates: The MPTP Model. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009308-a009308.	6.2	131
51	Altered D1 dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiology of Disease, 2007, 26, 452-463.	4.4	130
52	A tale on animal models of Parkinson's disease. Movement Disorders, 2011, 26, 993-1002.	3.9	130
53	Pharmacological Analysis Demonstrates Dramatic Alteration of D ₁ Dopamine Receptor Neuronal Distribution in the Rat Analog of I-DOPA-Induced Dyskinesia. Journal of Neuroscience, 2009, 29, 4829-4835.	3.6	128
54	Study of the antidyskinetic effect of eltoprazine in animal models of levodopaâ€induced dyskinesia. Movement Disorders, 2013, 28, 1088-1096.	3.9	128

#	Article	IF	CITATIONS
55	Lentiviral Overexpression of GRK6 Alleviates <scp>l</scp> -Dopa–Induced Dyskinesia in Experimental Parkinson's Disease. Science Translational Medicine, 2010, 2, 28ra28.	12.4	127
56	Sleep disorders in Parkinson's disease: The contribution of the MPTP non-human primate model. Experimental Neurology, 2009, 219, 574-582.	4.1	124
57	RGS9–2 Negatively Modulates I-3,4-Dihydroxyphenylalanine-Induced Dyskinesia in Experimental Parkinson's Disease. Journal of Neuroscience, 2007, 27, 14338-14348.	3.6	116
58	Priming for l-dopa-induced dyskinesia in Parkinson's disease: A feature inherent to the treatment or the disease?. Progress in Neurobiology, 2009, 87, 1-9.	5.7	116
59	Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors. Parkinsonism and Related Disorders, 2005, 11, S25-S29.	2.2	113
60	Distinct Changes in cAMP and Extracellular Signal-Regulated Protein Kinase Signalling in L-DOPA-Induced Dyskinesia. PLoS ONE, 2010, 5, e12322.	2.5	111
61	A Phase 2A Trial of the Novel mGluR5-Negative Allosteric Modulator Dipraglurant for Levodopa-Induced Dyskinesia in Parkinson's Disease. Movement Disorders, 2016, 31, 1373-1380.	3.9	111
62	Exosomes, an Unmasked Culprit in Neurodegenerative Diseases. Frontiers in Neuroscience, 2017, 11, 26.	2.8	110
63	PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. Journal of Clinical Investigation, 2012, 122, 3977-3989.	8.2	110
64	Alphaâ€synuclein propagation: New insights from animal models. Movement Disorders, 2016, 31, 161-168.	3.9	100
65	Contribution of pre-synaptic mechanisms to l-DOPA-induced dyskinesia. Neuroscience, 2011, 198, 245-251.	2.3	98
66	In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiology of Disease, 2017, 103, 101-112.	4.4	96
67	Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nature Protocols, 2018, 13, 2031-2061.	12.0	96
68	Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature, 2021, 590, 308-314.	27.8	96
69	l-DOPA reverses the MPTP-induced elevation of the arrestin2 and CRK6 expression and enhanced ERK activation in monkey brain. Neurobiology of Disease, 2005, 18, 323-335.	4.4	94
70	Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson's disease. Scientific Reports, 2017, 7, 7495.	3.3	94
71	Striatal histone modifications in models of levodopaâ€induced dyskinesia. Journal of Neurochemistry, 2008, 106, 486-494.	3.9	92
72	Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18005-18010.	7.1	92

#	Article	IF	CITATIONS
73	Motor and non-motor circuit disturbances in early Parkinson disease: which happens first?. Nature Reviews Neuroscience, 2022, 23, 115-128.	10.2	92
74	Targeting β-arrestin2 in the treatment of <scp>l</scp> -DOPA–induced dyskinesia in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2517-26.	7.1	91
75	Striatal Overexpression of ΔJunD Resets L-DOPA-Induced Dyskinesia in a Primate Model of Parkinson Disease. Biological Psychiatry, 2009, 66, 554-561.	1.3	89
76	Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9593-9598.	7.1	89
77	Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathologica Communications, 2015, 3, 46.	5.2	88
78	Rise and fall of minocycline in neuroprotection: need to promote publication of negative results. Experimental Neurology, 2004, 189, 1-4.	4.1	83
79	Involvement of Sensorimotor, Limbic, and Associative Basal Ganglia Domains in L-3,4-Dihydroxyphenylalanine-Induced Dyskinesia. Journal of Neuroscience, 2005, 25, 2102-2107.	3.6	83
80	The 3-Hydroxy-3-Methylglutaryl-CoA Reductase Inhibitor Lovastatin Reduces Severity of l-DOPA-Induced Abnormal Involuntary Movements in Experimental Parkinson's Disease. Journal of Neuroscience, 2008, 28, 4311-4316.	3.6	83
81	Enhanced Preproenkephalin-B–Derived Opioid Transmission in Striatum and Subthalamic Nucleus Converges Upon Globus Pallidus Internalis in L-3,4-dihydroxyphenylalanine–Induced Dyskinesia. Biological Psychiatry, 2007, 61, 836-844.	1.3	82
82	Neuroanatomical Study of the A11 Diencephalospinal Pathway in the Non-Human Primate. PLoS ONE, 2010, 5, e13306.	2.5	82
83	Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain, 2017, 140, 1420-1436.	7.6	80
84	Antagonizing L-type Ca2+ Channel Reduces Development of Abnormal Involuntary Movement in the Rat Model of L-3,4-Dihydroxyphenylalanine-Induced Dyskinesia. Biological Psychiatry, 2009, 65, 518-526.	1.3	78
85	Time-Course of Nigrostriatal Degeneration in a Progressive MPTP-Lesioned Macaque Model of Parkinson's Disease. Molecular Neurobiology, 2003, 28, 209-218.	4.0	76
86	Phenotype of Striatofugal Medium Spiny Neurons in Parkinsonian and Dyskinetic Nonhuman Primates: A Call for a Reappraisal of the Functional Organization of the Basal Ganglia. Journal of Neuroscience, 2006, 26, 8653-8661.	3.6	76
87	Altered pallidoâ€pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson's disease. Journal of Physiology, 2012, 590, 5861-5875.	2.9	76
88	Lysosomes and α-synuclein form a dangerous duet leading to neuronal cell death. Frontiers in Neuroanatomy, 2014, 8, 83.	1.7	76
89	Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental Parkinsonism. Neurogastroenterology and Motility, 2009, 21, 215-222.	3.0	75
90	Levetiracetam Potentiates the Antidyskinetic Action of Amantadine in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-Lesioned Primate Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 386-394.	2.5	74

#	Article	IF	CITATIONS
91	Levodopa-induced dyskinesia in MPTP-treated macaques is not dependent on the extent and pattern of nigrostrial lesioning. European Journal of Neuroscience, 2005, 22, 283-287.	2.6	74
92	Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neuroscience Letters, 1997, 234, 47-50.	2.1	70
93	Experimental Models of Parkinson's Disease: From the Static to the Dynamic. Reviews in the Neurosciences, 1998, 9, 71-90.	2.9	70
94	Adaptive changes in the nigrostriatal pathway in response to increased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration in the mouse. European Journal of Neuroscience, 2000, 12, 2892-2900.	2.6	70
95	Lysosomal dysfunction in Parkinson disease. Autophagy, 2012, 8, 1389-1391.	9.1	69
96	Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nature Communications, 2020, 11, 3440.	12.8	69
97	L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Scientific Reports, 2014, 4, 3730.	3.3	68
98	Selective Inactivation of Striatal FosB/ΔFosB-Expressing Neurons Alleviates L-DOPA–Induced Dyskinesia. Biological Psychiatry, 2016, 79, 354-361.	1.3	68
99	The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Movement Disorders, 2014, 29, 1074-1079.	3.9	66
100	Differential behavioral effects of partial bilateral lesions of ventral tegmental area or substantia nigra pars compacta in rats. Neuroscience, 2008, 153, 1213-1224.	2.3	65
101	Synaptic recruitment of AMPA glutamate receptor subunits in levodopaâ€induced dyskinesia in the MPTPâ€lesioned nonhuman primate. Synapse, 2010, 64, 177-180.	1.2	65
102	Systemic gene delivery to the central nervous system using Adeno-associated virus. Frontiers in Molecular Neuroscience, 2014, 7, 50.	2.9	65
103	Multiple System Atrophy: Recent Developments and Future Perspectives. Movement Disorders, 2019, 34, 1629-1642.	3.9	65
104	5-HT1A receptor agonist-mediated protection from MPTP toxicity in mouse and macaque models of Parkinson's disease. Neurobiology of Disease, 2006, 23, 77-86.	4.4	64
105	Immediate-early gene expression in structures outside the basal ganglia is associated to I-DOPA-induced dyskinesia. Neurobiology of Disease, 2014, 62, 179-192.	4.4	63
106	Levetiracetam improves choreic levodopa-induced dyskinesia in the MPTP-treated macaque. European Journal of Pharmacology, 2004, 485, 159-164.	3.5	62
107	A critique of available scales and presentation of the nonâ€human primate dyskinesia rating scale. Movement Disorders, 2012, 27, 1373-1378.	3.9	62
108	Compensatory effects of glutamatergic inputs to the substantia nigra pars compacta in experimental Parkinsonism. Neuroscience, 1997, 81, 399-404.	2.3	60

#	Article	IF	CITATIONS
109	Noradrenergic Modulation of Subthalamic Nucleus Activity: Behavioral and Electrophysiological Evidence in Intact and 6-Hydroxydopamine-Lesioned Rats. Journal of Neuroscience, 2007, 27, 9595-9606.	3.6	60
110	Upregulation of Striatal Preproenkephalin Gene Expression Occurs before the Appearance of Parkinsonian Signs in 1-Methyl-4-phenyl- 1,2,3,6-tetrahydropyridine Monkeys. Neurobiology of Disease, 2001, 8, 343-350.	4.4	59
111	Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease. FASEB Journal, 2001, 15, 1092-1094.	0.5	56
112	G2019S LRRK2 mutation facilitates α-synuclein neuropathology in aged mice. Neurobiology of Disease, 2018, 120, 21-33.	4.4	56
113	Transcription factor EB overexpression prevents neurodegeneration in experimental synucleinopathies. JCI Insight, 2019, 4, .	5.0	54
114	Dystonia and dopamine: From phenomenology to pathophysiology. Progress in Neurobiology, 2019, 182, 101678.	5.7	53
115	Novel antiepileptic drug levetiracetam decreases dyskinesia elicited byL-dopa and ropinirole in the MPTP-lesioned marmoset. Movement Disorders, 2003, 18, 1301-1305.	3.9	51
116	Temporal and spatial alterations in GPi neuronal encoding might contribute to slow down movement in Parkinsonian monkeys. European Journal of Neuroscience, 2006, 24, 1201-1208.	2.6	51
117	Novel self-replicating α-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons. Science Advances, 2020, 6, .	10.3	49
118	Dopamine receptors and l-dopa-induced dyskinesia. Parkinsonism and Related Disorders, 2009, 15, S8-S12.	2.2	48
119	Double-Dissociation of the Catecholaminergic Modulation of Synaptic Transmission in the Oval Bed Nucleus of the Stria Terminalis. Journal of Neurophysiology, 2011, 105, 145-153.	1.8	48
120	Dopamine Transporter Binding Is Unaffected by L-DOPA Administration in Normal and MPTP-Treated Monkeys. PLoS ONE, 2010, 5, e14053.	2.5	48
121	Molecular Mechanisms of I-DOPA-Induced Dyskinesia. International Review of Neurobiology, 2011, 98, 95-122.	2.0	47
122	An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology, 2016, 110, 48-58.	4.1	47
123	Effect of the D3 Dopamine Receptor Partial Agonist BP897 [N-[4-(4-(2-Methoxyphenyl)piperazinyl)butyl]-2-naphthamide] on I-3,4-Dihydroxyphenylalanine-Induced Dyskinesias and Parkinsonism in Squirrel Monkeys. Journal of Pharmacology and Experimental Therapeutics. 2004, 311, 770-777.	2.5	46
124	Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology?. Frontiers in Aging Neuroscience, 2014, 6, 258.	3.4	46
125	Experimental animal models of Parkinson's disease: A transition from assessing symptomatology to α-synuclein targeted disease modification. Experimental Neurology, 2017, 298, 172-179.	4.1	45
126	Striatal Proteomic Analysis Suggests that First L-Dopa Dose Equates to Chronic Exposure. PLoS ONE, 2008, 3, e1589.	2.5	45

#	Article	IF	CITATIONS
127	Anti-dyskinetic effect of anpirtoline in animal models of L-DOPA-induced dyskinesia. Neuroscience Research, 2013, 77, 242-246.	1.9	44
128	An m <scp>G</scp> lu4â€ <scp>P</scp> ositive <scp>A</scp> llosteric <scp>M</scp> odulator <scp>A</scp> lleviates <scp>P</scp> arkinsonism in <scp>P</scp> rimates. Movement Disorders, 2018, 33, 1619-1631.	3.9	44
129	<scp>RGS</scp> 9â€2 rescues dopamine D2 receptor levels and signaling in <i> <scp>DYT</scp> 1 </i> dystonia mouse models. EMBO Molecular Medicine, 2019, 11, .	6.9	44
130	Pattern of levodopa-induced striatal changes is different in normal and MPTP-lesioned mice. Journal of Neurochemistry, 2003, 84, 1246-1255.	3.9	43
131	Levodopa gains psychostimulantâ€like properties after nigral dopaminergic loss. Annals of Neurology, 2013, 74, 140-144.	5.3	43
132	D1 Dopamine Receptor-Mediated LTP at GABA Synapses Encodes Motivation to Self-Administer Cocaine in Rats. Journal of Neuroscience, 2013, 33, 11960-11971.	3.6	43
133	Targeting α-Synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules, 2020, 10, 391.	4.0	43
134	Widespread Monoaminergic Dysregulation of Both Motor and Non-Motor Circuits in Parkinsonism and Dyskinesia. Cerebral Cortex, 2015, 25, 2783-2792.	2.9	42
135	The hidden side of Parkinson's disease: Studying pain, anxiety and depression in animal models. Neuroscience and Biobehavioral Reviews, 2019, 96, 335-352.	6.1	42
136	Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods, 2020, 174, 91-99.	3.8	41
137	Effect of serotonin transporter blockade on L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Neuroscience, 2015, 298, 389-396.	2.3	40
138	Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiology of Disease, 2017, 108, 54-64.	4.4	40
139	Subthalamic stimulation elicits hemiballismus in normal monkey. NeuroReport, 1997, 8, 1625-1629.	1.2	39
140	Nociceptin/Orphanin FQ Receptor Agonists Attenuate L-DOPA-Induced Dyskinesias. Journal of Neuroscience, 2012, 32, 16106-16119.	3.6	39
141	Why bother using non-human primate models of cognitive disorders in translational research?. Neurobiology of Learning and Memory, 2015, 124, 123-129.	1.9	39
142	CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nature Communications, 2020, 11, 4885.	12.8	39
143	Presymptomatic diagnosis of experimental Parkinsonism with 123I-PE2I SPECT. NeuroImage, 2003, 19, 810-816.	4.2	37
144	Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis: A proteomic study of L-DOPA induced dyskinesia in an animal model of Parkinson's disease using DIGE. BMC Bioinformatics, 2006, 7, 475.	2.6	37

#	Article	IF	CITATIONS
145	l-DOPA Impairs Proteasome Activity in Parkinsonism through D ₁ Dopamine Receptor. Journal of Neuroscience, 2012, 32, 681-691.	3.6	37
146	Behavioural Profiles in Captive-Bred Cynomolgus Macaques: Towards Monkey Models of Mental Disorders?. PLoS ONE, 2013, 8, e62141.	2.5	37
147	Combined fenobam and amantadine treatment promotes robust antidyskinetic effects in the 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridine (MPTP)â€lesioned primate model of Parkinson's disease. Movement Disorders, 2014, 29, 772-779.	3.9	37
148	D1 receptor agonist improves sleep–wake parameters in experimental parkinsonism. Neurobiology of Disease, 2014, 63, 20-24.	4.4	37
149	Targeting αâ€synuclein: Therapeutic options. Movement Disorders, 2016, 31, 882-888.	3.9	37
150	Glucocerebrosidase deficiency in dopaminergic neurons induces microglial activation without neurodegeneration. Human Molecular Genetics, 2017, 26, 2603-2615.	2.9	37
151	New animal models of Parkinson's disease. Movement Disorders, 2011, 26, 1198-1205.	3.9	36
152	Antidyskinetic effect of A _{2A} and 5HT _{1A/1B} receptor ligands in two animal models of Parkinson's disease. Movement Disorders, 2016, 31, 501-511.	3.9	36
153	Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy. Neurobiology of Disease, 2020, 137, 104738.	4.4	36
154	Multi-facetted impulsivity following nigral degeneration and dopamine replacement therapy. Neuropharmacology, 2016, 109, 69-77.	4.1	35
155	Viralâ€mediated oligodendroglial alphaâ€synuclein expression models multiple system atrophy. Movement Disorders, 2017, 32, 1230-1239.	3.9	35
156	Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. Science Advances, 2020, 6, eaaz9165.	10.3	34
157	RasGRP1 is a causal factor in the development of <scp>l</scp> -DOPA–induced dyskinesia in Parkinson's disease. Science Advances, 2020, 6, eaaz7001.	10.3	33
158	Levodopa improves motor deficits but can further disrupt cognition in a macaque parkinson model. Movement Disorders, 2013, 28, 663-667.	3.9	32
159	Increased surface P2X4 receptor regulates anxiety and memory in P2X4 internalization-defective knock-in mice. Molecular Psychiatry, 2021, 26, 629-644.	7.9	32
160	The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson's disease patients. Scientific Reports, 2019, 9, 8898.	3.3	31
161	Reinforcing properties of Pramipexole in normal and parkinsonian rats. Neurobiology of Disease, 2013, 49, 79-86.	4.4	30
162	Endogenous morphine-like compound immunoreactivity increases in parkinsonism. Brain, 2011, 134, 2321-2338.	7.6	29

#	Article	IF	CITATIONS
163	Systemic scAAV9 variant mediates brain transduction in newborn rhesus macaques. Scientific Reports, 2012, 2, 253.	3.3	29
164	Dopamine-Dependent Long-Term Depression at Subthalamo-Nigral Synapses Is Lost in Experimental Parkinsonism. Journal of Neuroscience, 2013, 33, 14331-14341.	3.6	29
165	Mass spectrometry imaging identifies abnormally elevated brain <scp>l</scp> -DOPA levels and extrastriatal monoaminergic dysregulation in <scp>l</scp> -DOPA–induced dyskinesia. Science Advances, 2021, 7, .	10.3	29
166	Multiple system atrophy: A prototypical synucleinopathy for disease-modifying therapeutic strategies. Neurobiology of Disease, 2014, 67, 133-139.	4.4	28
167	Blood withdrawal affects iron store dynamics in primates with consequences on monoaminergic system function. Neuroscience, 2015, 290, 621-635.	2.3	28
168	Simvastatin decreases levodopa-induced dyskinesia in monkeys, but not in a randomized, placebo-controlled, multiple cross-over ("n-of-1â€) exploratory trial of simvastatin against levodopa-induced dyskinesia in Parkinson's disease patients. Parkinsonism and Related Disorders, 2013, 19, 416-421.	2.2	27
169	Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: a 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson's disease. European Journal of Neuroscience, 2007, 25, 1492-1500.	2.6	26
170	Endosulfine-alpha inhibits membrane-induced α-synuclein aggregation and protects against α-synuclein neurotoxicity. Acta Neuropathologica Communications, 2017, 5, 3.	5.2	26
171	Pallidal border cells: an anatomical and electrophysiological study in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkey. Neuroscience, 2001, 103, 117-123.	2.3	25
172	Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson's disease and I-DOPA-induced dyskinesia. Neurobiology of Disease, 2014, 62, 307-312.	4.4	25
173	Genetic and pharmacological evidence that endogenous nociceptin/orphanin FQ contributes to dopamine cell loss in Parkinson's disease. Neurobiology of Disease, 2016, 89, 55-64.	4.4	24
174	NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiology of Disease, 2019, 121, 338-349.	4.4	24
175	µ Opioid Receptor Agonism for L-DOPA-Induced Dyskinesia in Parkinson's Disease. Journal of Neuroscience, 2020, 40, 6812-6819.	3.6	24
176	Impaired brain insulin signalling in Parkinson's disease. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	22
177	Levetiracetam Interferes With the I-Dopa Priming Process in MPTP-Lesioned Drug-Naive Marmosets. Clinical Neuropharmacology, 2004, 27, 171-177.	0.7	21
178	Age-dependent α-synuclein aggregation in the Microcebus murinus lemur primate. Scientific Reports, 2012, 2, 910.	3.3	21
179	Lack of spontaneous age-related brain pathology in Octodon degus: a reappraisal of the model. Scientific Reports, 2017, 7, 45831.	3.3	21
180	Depressive-like behavioral profiles in captive-bred single- and socially-housed rhesus and cynomolgus macaques: a species comparison. Frontiers in Behavioral Neuroscience, 2014, 8, 47.	2.0	20

#	Article	IF	CITATIONS
181	Harnessing Lysosomal pH through PLGA Nanoemulsion as a Treatment of Lysosomal-Related Neurodegenerative Diseases. Bioconjugate Chemistry, 2018, 29, 4083-4089.	3.6	20
182	The expression of cannabinoid type 1 receptor and 2-arachidonoyl glycerol synthesizing/degrading enzymes is altered in basal ganglia during the active phase of levodopa-induced dyskinesia. Neurobiology of Disease, 2018, 118, 64-75.	4.4	20
183	Alterations in Functional Cortical Hierarchy in Hemiparkinsonian Rats. Journal of Neuroscience, 2017, 37, 7669-7681.	3.6	19
184	Birth Origin Differentially Affects Depressive-Like Behaviours: Are Captive-Born Cynomolgus Monkeys More Vulnerable to Depression than Their Wild-Born Counterparts?. PLoS ONE, 2013, 8, e67711.	2.5	19
185	Acidic nanoparticles protect against αâ€synucleinâ€induced neurodegeneration through the restoration of lysosomal function. Aging Cell, 2022, 21, e13584.	6.7	19
186	RCS4 is involved in the generation of abnormal involuntary movements in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease. Neurobiology of Disease, 2014, 70, 138-148.	4.4	18
187	Inhibiting Lateral Habenula Improves L-DOPA–Induced Dyskinesia. Biological Psychiatry, 2016, 79, 345-353.	1.3	18
188	A preclinical study on the combined effects of repeated eltoprazine and preladenant treatment for alleviating L-DOPA-induced dyskinesia in Parkinson's disease. European Journal of Pharmacology, 2017, 813, 10-16.	3.5	18
189	Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain, 2022, 145, 2092-2107.	7.6	18
190	Neuroprotection for Parkinson's disease: a call for clinically riven experimental design. Lancet Neurology, The, 2003, 2, 393.	10.2	17
191	Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells. Journal of Neuroscience, 2018, 38, 814-825.	3.6	16
192	Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease. Brain, 2019, 142, 2402-2416.	7.6	16
193	Could the serotonin theory give rise to a treatment for levodopa-induced dyskinesia in Parkinson's disease?. Brain, 2015, 138, 829-830.	7.6	15
194	Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse, 2016, 70, 71-86.	1.2	15
195	Inhaling xenon ameliorates <scp>l</scp> â€dopaâ€induced dyskinesia in experimental parkinsonism. Movement Disorders, 2018, 33, 1632-1642.	3.9	15
196	Overexpression of α-Synuclein by Oligodendrocytes in Transgenic Mice Does Not Recapitulate the Fibrillar Aggregation Seen in Multiple System Atrophy. Cells, 2020, 9, 2371.	4.1	15
197	Ablation of the tail of the ventral tegmental area compensates symptoms in an experimental model of Parkinson's disease. Neurobiology of Disease, 2020, 139, 104818.	4.4	15
198	Similar neuronal imprint and no cross-seeded fibrils in α-synuclein aggregates from MSA and Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 10.	5.3	15

#	Article	IF	CITATIONS
199	Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human disease. Neurobiology of Disease, 2021, 148, 105184.	4.4	14
200	Brain injections of glial cytoplasmic inclusions induce a multiple system atrophy-like pathology. Brain, 2022, 145, 1001-1017.	7.6	14
201	In vivo electrophysiological validation of DREADDâ€based modulation of pallidal neurons in the nonâ€human primate. European Journal of Neuroscience, 2021, 53, 2192-2204.	2.6	13
202	Unexpected toxicity of very low dose MPTP in mice: A clue to the etiology of Parkinson's disease?. Synapse, 2016, 70, 49-51.	1.2	12
203	Cardinal Motor Features of Parkinson's Disease Coexist with Peak-Dose Choreic-Type Drug-Induced Dyskinesia. Journal of Parkinson's Disease, 2018, 8, 323-331.	2.8	12
204	Use of adeno-associated virus-mediated delivery of mutant huntingtin to study the spreading capacity of the protein in mice and non-human primates. Neurobiology of Disease, 2020, 141, 104951.	4.4	12
205	Nilotinib Fails to Prevent Synucleinopathy and Cell Loss in a Mouse Model of Multiple System Atrophy. Movement Disorders, 2020, 35, 1163-1172.	3.9	12
206	Dopaminergic co-transmission with sonic hedgehog inhibits abnormal involuntary movements in models of Parkinson's disease and L-Dopa induced dyskinesia. Communications Biology, 2021, 4, 1071.	4.4	12
207	Decreased Rhes mRNA levels in the brain of patients with Parkinson's disease and MPTP-treated macaques. PLoS ONE, 2017, 12, e0181677.	2.5	12
208	Permeability of blood–brain barrier in macaque model of 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€induced Parkinson disease. Synapse, 2016, 70, 231-239.	1.2	11
209	Intrastriatal injection of alpha-synuclein fibrils induces Parkinson-like pathology in macaques. Brain, 2019, 142, 3321-3322.	7.6	11
210	Managing Parkinson's disease: moving ON with NOP. British Journal of Pharmacology, 2020, 177, 28-47.	5.4	11
211	Evidence for the spread of human-derived mutant huntingtin protein in mice and non-human primates. Neurobiology of Disease, 2020, 141, 104941.	4.4	11
212	Lâ€ÐOPA regulates αâ€synuclein accumulation in experimental parkinsonism. Neuropathology and Applied Neurobiology, 2021, 47, 532-543.	3.2	11
213	D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly. Neurobiology of Disease, 2015, 78, 77-87.	4.4	10
214	From <scp>iPS</scp> Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Movement Disorders, 2021, 36, 832-841.	3.9	10
215	Pilot Study Assessing the Impact of Intrathecal Administration of Variants AAV-PHP.B and AAV-PHP.eB on Brain Transduction in Adult Rhesus Macaques. Frontiers in Bioengineering and Biotechnology, 2021, 9, 762209.	4.1	10
216	Effects of l-tryptophan on l-DOPA-induced dyskinesia in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque model of Parkinson's disease. Neuroscience Letters, 2014, 566, 72-76.	2.1	9

#	Article	IF	CITATIONS
217	U18666A, an activator of sterol regulatory element binding protein pathway, modulates presynaptic dopaminergic phenotype of SH-SY5Y neuroblastoma cells. Synapse, 2017, 71, e21980.	1.2	9
218	In utero delivery of rAAV2/9 induces neuronal expression of the transgene in the brain: towards new models of Parkinson's disease. Gene Therapy, 2017, 24, 801-809.	4.5	8
219	Remnants of Cardinal Symptoms of Parkinson's Disease, Not Dyskinesia, Are Problematic for Dyskinetic Patients Performing Activities of Daily Living. Frontiers in Neurology, 2019, 10, 256.	2.4	8
220	Intraventricular dopamine infusion alleviates motor symptoms in a primate model of Parkinson's disease. Neurobiology of Disease, 2020, 139, 104846.	4.4	8
221	Involvement of Autophagy in Levodopaâ€Induced Dyskinesia. Movement Disorders, 2021, 36, 1137-1146.	3.9	8
222	In vivo susceptibility to energy failure parkinsonism and LRRK2 kinase activity. Neurobiology of Disease, 2022, 162, 105579.	4.4	8
223	Neurons with Cat's Eyes: A Synthetic Strain of α-Synuclein Fibrils Seeding Neuronal Intranuclear Inclusions. Biomolecules, 2022, 12, 436.	4.0	8
224	Metaâ€analysis of amantadine efficacy for improving preclinical research reliability. Movement Disorders, 2018, 33, 1555-1557.	3.9	7
225	Striatal NELF-mediated RNA polymerase II stalling controls l -dopa induced dyskinesia. Neurobiology of Disease, 2016, 85, 93-98.	4.4	6
226	Involvement of the bed nucleus of the stria terminalis in L-Dopa induced dyskinesia. Scientific Reports, 2017, 7, 2348.	3.3	6
227	Adenosine A _{2A} R/A ₁ R Antagonists Enabling Additional H ₃ R Antagonism for the Treatment of Parkinson's Disease. Journal of Medicinal Chemistry, 2021, 64, 8246-8262.	6.4	6
228	Levodopa–induced dyskinesias in the absence of nigrostriatal degeneration. Movement Disorders, 2013, 28, 1023-1024.	3.9	5
229	Local transgene expression and wholeâ€body transgenesis to model brain diseases in nonhuman primate. Animal Models and Experimental Medicine, 2019, 2, 9-17.	3.3	5
230	Comparison of the expression and toxicity of AAV2/9 carrying the human A53T α-synuclein gene in presence or absence of WPRE. Heliyon, 2021, 7, e06302.	3.2	5
231	Evaluation of blood flow as a route for propagation in experimental synucleinopathy. Neurobiology of Disease, 2021, 150, 105255.	4.4	5
232	How Lazy Reading and Semantic Sloppiness May Harm Progress in Synucleinopathy Research. Biomolecules, 2022, 12, 228.	4.0	5
233	Basal ganglia neuropeptides show abnormal processing associated with L-DOPA-induced dyskinesia. Npj Parkinson's Disease, 2022, 8, 41.	5.3	5
234	Down-regulating α-synuclein for treating synucleopathies. Movement Disorders, 2014, 29, 1463-1465.	3.9	4

#	Article	IF	CITATIONS
235	Bioelectronic Interfaces: Soft, Implantable Bioelectronic Interfaces for Translational Research (Adv.) Tj ETQq1	1 0.784314 21.0	rgBŢ /Overloc
236	Monitoring of a progressive functional dopaminergic deficit in the A53T-AAV synuclein rats by combining 6-[18F]fluoro-L-m-tyrosine imaging and motor performances analysis. Neurobiology of Aging, 2021, 107, 142-152.	3.1	4
237	Lack of limbic-predominant age-related TDP-43 encephalopathy (LATE) neuropathological changes in aged macaques with memory impairment. Neurobiology of Aging, 2021, 107, 53-56.	3.1	4
238	Gastrointestinal and metabolic function in the MPTP-treated macaque model of Parkinson's disease. Heliyon, 2020, 6, e05771.	3.2	4
239	Early prenatal exposure to MPTP does not affect nigrostrial neurons in macaque monkey. Synapse, 2016, 70, 52-56.	1.2	3
240	Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease. FASEB Journal, 2001, 15, 1092-1094.	0.5	3
241	Microdialysis in awake macaque monkeys for central nervous system pharmacokinetics. Animal Models and Experimental Medicine, 2018, 1, 314-321.	3.3	2
242	Assessment of plasma creatine kinase as biomarker for levodopa-induced dyskinesia in Parkinson's disease. Journal of Neural Transmission, 2019, 126, 789-793.	2.8	2
243	Viral Vectors in Primate Research: Examples from Parkinson's Disease Research. Neuromethods, 2014, , 331-341.	0.3	2
244	Systemic Gene Delivery by Single-Dose Intracardiac Administration of scAAV2/9 and scAAV2/rh10 Variants in Newborn Rats. Human Gene Therapy Methods, 2018, 29, 189-199.	2.1	1
245	Models of hyperkinetic disorders in primates. Journal of Neuroscience Methods, 2020, 332, 108551.	2.5	1
246	<scp>l</scp> â€Dopa–free learned dyskinetic behavior in a Parkinson's primate model. Movement Disorders, 2019, 34, 1237-1237.	3.9	0