Kyle M Stiers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/259103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of the T337M and G391V disease-related variants on human phosphoglucomutase 1: structural disruptions large and small. Acta Crystallographica Section F, Structural Biology Communications, 2022, 78, 200-209.	0.8	0
2	Structure, biochemistry, and gene expression patterns of the proline biosynthetic enzyme pyrroline-5-carboxylate reductase (PYCR), an emerging cancer therapy target. Amino Acids, 2021, 53, 1817-1834.	2.7	20
3	Structural basis for the stereospecific inhibition of the dual proline/hydroxyproline catabolic enzyme ALDH4A1 by transâ€4â€hydroxy‣â€proline. Protein Science, 2021, 30, 1714-1722.	7.6	4
4	Kinetics of human pyrroline-5-carboxylate reductase in l-thioproline metabolism. Amino Acids, 2021, 53, 1863-1874.	2.7	0
5	Trapping conformational states of a flavin-dependent N-monooxygenase in crystallo reveals protein and flavin dynamics. Journal of Biological Chemistry, 2020, 295, 13239-13249.	3.4	13
6	Cautionary Tale of Using Tris(alkyl)phosphine Reducing Agents with NAD ⁺ -Dependent Enzymes. Biochemistry, 2020, 59, 3285-3289.	2.5	7
7	A missense variant remote from the active site impairs stability of human phosphoglucomutase 1. Journal of Inherited Metabolic Disease, 2020, 43, 861-870.	3.6	1
8	Inhibitory Evaluation of αPMM/PGM from <i>Pseudomonas aeruginosa</i> : Chemical Synthesis, Enzyme Kinetics, and Protein Crystallographic Study. Journal of Organic Chemistry, 2019, 84, 9627-9636.	3.2	8
9	Synthesis, Derivatization, and Structural Analysis of Phosphorylated Mono-, Di-, and Trifluorinated <scp>d</scp> -Gluco-heptuloses by Glucokinase: Tunable Phosphoglucomutase Inhibition. ACS Omega, 2019, 4, 7029-7037.	3.5	9
10	The Metabolic Map into the Pathomechanism and Treatment of PGM1-CDG. American Journal of Human Genetics, 2019, 104, 835-846.	6.2	59
11	Structural and dynamical description of the enzymatic reaction of a phosphohexomutase. Structural Dynamics, 2019, 6, 024703.	2.3	8
12	Assessment and Impacts of Phosphorylation on Protein Flexibility of the α-d-Phosphohexomutases. Methods in Enzymology, 2018, 607, 241-267.	1.0	5
13	A Hotspot for Disease-Associated Variants of Human PGM1 Is Associated with Impaired Ligand Binding and Loop Dynamics. Structure, 2018, 26, 1337-1345.e3.	3.3	17
14	Asp263 missense variants perturb the active site of human phosphoglucomutase 1. FEBS Journal, 2017, 284, 937-947.	4.7	14
15	Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. Journal of Biological Chemistry, 2017, 292, 9652-9665.	3.4	21
16	Phosphorylation-Dependent Effects on the Structural Flexibility of Phosphoglucosamine Mutase from <i>Bacillus anthracis</i> . ACS Omega, 2017, 2, 8445-8452.	3.5	4
17	Biology, Mechanism, and Structure of Enzymes in the α- d -Phosphohexomutase Superfamily. Advances in Protein Chemistry and Structural Biology, 2017, 109, 265-304.	2.3	38
18	Sequence-structure relationships, expression profiles, and disease-associated mutations in the paralogs of phosphoglucomutase 1. PLoS ONE, 2017, 12, e0183563.	2.5	16

Kyle M Stiers

#	Article	IF	CITATIONS
19	Synchrotron-based macromolecular crystallography module for an undergraduate biochemistry laboratory course. Journal of Applied Crystallography, 2016, 49, 2235-2243.	4.5	4
20	Induced Structural Disorder as a Molecular Mechanism for Enzyme Dysfunction in Phosphoglucomutase 1 Deficiency. Journal of Molecular Biology, 2016, 428, 1493-1505.	4.2	21
21	Compromised Catalysis and Potential Folding Defects in in Vitro Studies of Missense Mutants Associated with Hereditary Phosphoglucomutase 1 Deficiency. Journal of Biological Chemistry, 2014, 289, 32010-32019.	3.4	43