
Hongbin Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2590825/publications.pdf Version: 2024-02-01

HONGRIN YAN

#	Article	IF	CITATIONS
1	A lightweight X-type metallic lattice in single-phase forced convection. International Journal of Heat and Mass Transfer, 2015, 83, 273-283.	4.8	75
2	Forced convection and heat transfer of water-cooled microchannel heat sinks with various structured metal foams. International Journal of Heat and Mass Transfer, 2017, 113, 1043-1053.	4.8	68
3	Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core. Applied Thermal Engineering, 2017, 127, 1293-1304.	6.0	58
4	Heat transfer enhancement by X-type lattice in ventilated brake disc. International Journal of Thermal Sciences, 2016, 107, 39-55.	4.9	46
5	Heat transfer enhancement of wedge-shaped channels by replacing pin fins with Kagome lattice structures. International Journal of Heat and Mass Transfer, 2019, 141, 88-101.	4.8	45
6	An X-type lattice cored ventilated brake disc with enhanced cooling performance. International Journal of Heat and Mass Transfer, 2015, 80, 458-468.	4.8	39
7	The effects of geometrical topology on fluid flow and thermal performance in Kagome cored sandwich panels. Applied Thermal Engineering, 2018, 142, 79-88.	6.0	39
8	Role of cross-drilled holes in enhanced cooling of ventilated brake discs. Applied Thermal Engineering, 2015, 91, 318-333.	6.0	35
9	Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores. International Journal of Heat and Mass Transfer, 2018, 127, 268-282.	4.8	35
10	Thermo-Fluidic Comparison between Sandwich Panels with Tetrahedral Lattice Cores Fabricated by Casting and Metal Sheet Folding. Energies, 2017, 10, 906.	3.1	26
11	Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger. Energies, 2018, 11, 919.	3.1	25
12	The influences of sidewall proximity on flow and thermal performance of a microchannel with large-row pin-fins. International Journal of Thermal Sciences, 2019, 140, 8-19.	4.9	23
13	An X-lattice cored rectangular honeycomb with enhanced convective heat transfer performance. Applied Thermal Engineering, 2020, 166, 114687.	6.0	22
14	Flow and thermal performance of sandwich panels with plate fins or/and pyramidal lattice. Applied Thermal Engineering, 2020, 164, 114468.	6.0	19
15	Role of vane configuration on the heat dissipation performance of ventilated brake discs. Applied Thermal Engineering, 2018, 136, 118-130.	6.0	16
16	Enhanced heat transfer in a pyramidal lattice sandwich panel by introducing pin-fins/protrusions/dimples. International Journal of Thermal Sciences, 2020, 156, 106468.	4.9	15
17	Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field. Energies, 2017, 10, 1065.	3.1	13
18	Heat transfer enhancement of X-lattice-cored sandwich panels by introducing pin fins, dimples or protrusions. International Journal of Heat and Mass Transfer, 2019, 141, 627-642.	4.8	12

Hongbin Yan

#	Article	IF	CITATIONS
19	Comparative study of flow structures and heat transfer enhancement in a metallic lattice fabricated by metal sheet folding: Effects of punching location shift. International Journal of Heat and Mass Transfer, 2019, 134, 209-225.	4.8	12
20	Experimental and numerical study of turbulent flow and enhanced heat transfer by cross-drilled holes in a pin-finned brake disc. International Journal of Thermal Sciences, 2017, 118, 355-366.	4.9	11
21	A numerical prediction on heat transfer characteristics from a circular tube in supercritical fluid crossflow. Applied Thermal Engineering, 2019, 153, 692-703.	6.0	10
22	Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study. Energies, 2017, 10, 492.	3.1	9
23	Heat transfer enhancement of rotating wedge-shaped channels with pin fins and Kagome lattices. Numerical Heat Transfer; Part A: Applications, 2020, 77, 1014-1033.	2.1	7
24	Experimental Study of Convective Heat Transfer in Standard and Cross-Drilled Brake Discs With Radial Vane and X-Lattice Cores. , 2018, , .		1