Mohd Sufri Mastuli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2590802/publications.pdf

Version: 2024-02-01

44 papers 1,245 citations

430874 18 h-index 32 g-index

44 all docs

44 docs citations

44 times ranked

1289 citing authors

#	Article	IF	CITATIONS
1	Multivariable optimization with desirability function for carbon porosity and methylene blue adsorption by watermelon rind activated carbon prepared by microwave assisted H3PO4. Biomass Conversion and Biorefinery, 2024, 14, 577-591.	4.6	21
2	Box–Behnken Design for Optimizing Synthesis and Adsorption Conditions of Covalently Crosslinked Chitosan/Coal Fly Ash Composite for Reactive Red 120 Dye Removal. Journal of Polymers and the Environment, 2022, 30, 3447-3462.	5.0	10
3	Chemoselective decarboxylation of ceiba oil to diesel-range alkanes over a red mud based catalyst under H ₂ -free conditions. RSC Advances, 2022, 12, 16903-16917.	3.6	4
4	Influence of Ti and Fe doping on the structural and electrochemical performance of LiCo0.6Ni0.4O2 cathode materials for Li-ion batteries. Ceramics International, 2022, , .	4.8	0
5	Progress on Modified Calcium Oxide Derived Waste-Shell Catalysts for Biodiesel Production. Catalysts, 2021, 11, 194.	3.5	22
6	Novel Al1.997Hf0.003O3 High-k gate dielectric thin films grown by pulsed laser deposition using pre-synthesized target material. Journal of Materials Science: Materials in Electronics, 2021, 32, 10927-10942.	2,2	1
7	Facile synthesis of nanosized La/ZrO2 catalysts for ketonization of free fatty acid and biomass feedstocks. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 217-228.	5.3	7
8	Catalytic Esterification of Palm Fatty Acid Distillate into Biodiesel Over Sulfonated Iron Oxide Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2021, 100, 301-306.	0.2	0
9	Ni, Zn and Fe hydrotalcite-like catalysts for catalytic biomass compound into green biofuel. Pure and Applied Chemistry, 2020, 92, 587-600.	1.9	8
10	Hematite microcube decorated TiO2 nanorods as heterojunction photocatalyst with in-situ carbon doping derived from polysaccharides bio-templates hydrothermal carbonization. Journal of Alloys and Compounds, 2020, 820, 153143.	5. 5	20
11	Free-H2 deoxygenation of Jatropha curcas oil into cleaner diesel-grade biofuel over coconut residue-derived activated carbon catalyst. Journal of Cleaner Production, 2020, 249, 119381.	9.3	51
12	Structural and catalytic studies of Mg1-xNixO nanomaterials for gasification of biomass in supercritical water for H2-rich syngas production. International Journal of Hydrogen Energy, 2020, 45, 33218-33234.	7.1	7
13	Sulfonated SnO ₂ nanocatalysts <i>via</i> a self-propagating combustion method for esterification of palm fatty acid distillate. RSC Advances, 2020, 10, 29187-29201.	3.6	13
14	Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts, 2020, 10, 1260.	3.5	82
15	Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: Statistical optimization and mechanism study. International Journal of Biological Macromolecules, 2020, 161, 503-513.	7.5	85
16	Mechanism of the formation of novel Al2-xHfxO3 materials via a combustion synthesis method. Results in Materials, 2020, 6, 100075.	1.8	4
17	Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. Journal of Taibah University for Science, 2020, 14, 305-313.	2.5	177
18	Photocatalytic activity of transition metals (Mn, Fe, Ag and Ni doped ZnO) nanomaterials synthesised via sol-gel method: Active sites over band gap. IOP Conference Series: Materials Science and Engineering, 2020, 839, 012006.	0.6	0

#	Article	IF	CITATIONS
19	Production of renewable diesel from Jatropha curcas oil via pyrolytic-deoxygenation over various multi-wall carbon nanotube-based catalysts. Chemical Engineering Research and Design, 2020, 142, 336-349.	5.6	48
20	Mesoporous Crosslinked Chitosan-Activated Charcoal Composite for the Removal of Thionine Cationic Dye: Comprehensive Adsorption and Mechanism Study. Journal of Polymers and the Environment, 2020, 28, 1095-1105.	5.0	86
21	SiO2-Rich Sugar Cane Bagasse Ash Catalyst for Transesterification of Palm Oil. Bioenergy Research, 2020, 13, 986-997.	3.9	29
22	Comparative study on photocatalytic activity of transition metals (Ag and Ni)-doped ZnO nanomaterials synthesized via sol–gel method. Royal Society Open Science, 2020, 7, 191590.	2.4	37
23	Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata). Renewable Energy, 2019, 131, 187-196.	8.9	47
24	Catalytic supercritical water gasification of oil palm frond biomass using nanosized MgO doped Zn catalysts. Journal of Supercritical Fluids, 2019, 154, 104610.	3.2	9
25	Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4 grafted on C, N co-doped ZnO micro-flowers with booming solar photocatalytic activity. Journal of Industrial and Engineering Chemistry, 2019, 77, 393-407.	5.8	64
26	Green Flexible Polyurethane Foam as a Potent Support for Fe-Si Adsorbent. Polymers, 2019, 11, 2011.	4.5	11
27	Comparative study between supported and doped MgO catalysts in supercritical water gasification for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 3690-3701.	7.1	15
28	Designing visible-light-driven photocatalyst of Ag3PO4/CeO2 for enhanced photocatalytic activity under low light irradiation. Journal of Materials Science: Materials in Electronics, 2019, 30, 415-423.	2.2	8
29	Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 11215-11228.	7.1	47
30	Optimization study of SiO 2 -Al 2 O 3 supported bifunctional acid–base NiO-CaO for renewable fuel production using response surface methodology. Energy Conversion and Management, 2017, 141, 325-338.	9.2	36
31	Preface: 4th International Conference on the Advancement of Materials and Nanotechnology. AIP Conference Proceedings, 2017, , .	0.4	0
32	Influence of annealing temperature on the phase transformation of Al2O3. AIP Conference Proceedings, 2016, , .	0.4	4
33	Synthesis of structured carbon nanorods for efficient hydrogen storage. Materials Letters, 2016, 179, 57-60.	2.6	25
34	Screening of modified CaO-based catalysts with a series of dopants for the supercritical water gasification of empty palm fruit bunches to produce hydrogen. RSC Advances, 2015, 5, 36798-36808.	3.6	26
35	MgO Nanostructured Materials Obtained <i>Via</i> the Solid-State Reaction Method. Advanced Materials Research, 2014, 895, 347-350.	0.3	0
36	Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nanoscale Research Letters, 2014, 9, 134.	5.7	56

#	ARTICLE	IF	CITATION
37	Effects of Cationic Surfactant in Sol-gel Synthesis of Nano Sized Magnesium Oxide. APCBEE Procedia, 2012, 3, 93-98.	0.5	43
38	Conductivities of Titanium Dioxide Obtained via the Sol-Gel Method. Advanced Materials Research, 0, 545, 143-147.	0.3	0
39	Sol-Gel Synthesis of Highly Stable Nano Sized MgO from Magnesium Oxalate Dihydrate. Advanced Materials Research, 0, 545, 137-142.	0.3	16
40	Electrochemical Performance of Mn and Fe Substitution in LiCo _{0.9} X _{0.1} O ₂ Cathode Materials. Solid State Phenomena, 0, 301, 195-201.	0.3	0
41	Carbonization of corn (Zea mays) cob food residue by one-step activation with sulfuric acid for methylene blue adsorption., 0, 118, 342-351.		39
42	Pomegranate peels collected from fresh juice shop as a renewable precursor for high surface area activated carbon with potential application for methylene blue adsorption., 0, 124, 287-296.		24
43	Adsorption behavior of methylene blue on acid-treated rubber (Hevea brasiliensis) leaf., 0, 124, 297-307.		30
44	Biosorption of methylene blue dye by rice (Oryza sativa L.) straw: adsorption and mechanism study. , 0, 190, 322-330.		33