
Andrey Bazlov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2590424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of AA2024/SiCp Metal Matrix Composite by Mechanical Alloying. Metals and Materials International, 2022, 28, 811-822.	3.4	11
2	Evolution of the Zr42.5Сu42.5Al10Fe5 amorphous alloy structure during the HPT process. Journal of Non-Crystalline Solids, 2022, 576, 121220.	3.1	6
3	Replacement effect with Ni on high-frequency permeability and core loss characteristics for FeNiPBSiC glassy alloys. Journal of Alloys and Compounds, 2022, 896, 163085.	5.5	3
4	Novel Zr-Rich Alloys of Ternary Ti-Zr-Nb System with Large Superelastic Recovery Strain. Metals, 2022, 12, 185.	2.3	3
5	Thermo-mechanical processing of a Zr62.5Cu22.5Fe5Al10 glassy alloy as a way to obtain tensile ductility. Journal of Alloys and Compounds, 2021, 853, 157138.	5.5	9
6	Evolution of Shear Bands in the Structure of a Zirconium-Based Amorphous Alloy during Rolling at Different Temperatures. Physics of Metals and Metallography, 2021, 122, 121-126.	1.0	1
7	Thermophysical Properties of the Fe48Cr15Mo14C15B6Y2 Alloy in Liquid State. Metals, 2021, 11, 823.	2.3	0
8	Character of the Distribution of Shear Bands According to the Volume of a Sample of Amorphous Alloy Based on Zr after Torsion under Pressure in a Bridgeman Chamber. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 782-790.	0.6	2
9	Formation of a phase separated structure in the Zr–Cu–Fe–Al alloys by thermo-mechanical processing. Intermetallics, 2021, 135, 107224.	3.9	8
10	Effect of High-Temperature Rolling and Annealing on the Structure and Properties of a Zirconium Based Amorphous Alloy. Physics of Metals and Metallography, 2021, 122, 789-793.	1.0	2
11	Influence of Cold Rolling Process and Chemical Composition on the Mechanical Properties and Corrosion Behavior of Zr-Based Metallic Glasses. Metals, 2021, 11, 1514.	2.3	5
12	Crystallization and its kinetics of soft magnetic (Fe1â^'xNix)79B12P5Si3C1 glassy alloy ribbons. Journal of Alloys and Compounds, 2021, 888, 161475.	5.5	5
13	Hydrothermal microwaveâ€assisted synthesis of LaFeO ₃ catalyst for N ₂ O decomposition. Journal of the American Ceramic Society, 2021, 104, 492-503.	3.8	15
14	The Study of Structural Changes in Homogenized High-Entropy Alloys. Physical Mesomechanics, 2021, 24, 663-673.	1.9	2
15	Effect of Heat Treatment on the Mechanical and Corrosion Properties of Mg–Zn–Ga Biodegradable Mg Alloys. Materials, 2021, 14, 7847.	2.9	8
16	Excellent magnetic properties of (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 ribbons and microwires. Intermetallics, 2020, 117, 106660.	3.9	16
17	Aluminum Alloy Matrix Composite Reinforced with Metallic Glasses Particles Using Hot-Roll Bonding. Russian Journal of Non-Ferrous Metals, 2020, 61, 297-302.	0.6	4
18	Quantitative characteristics of shear bands formed upon deformation in bulk amorphous Zr-based allov. Materials Letters. 2020. 281. 128659.	2.6	7

ANDREY BAZLOV

#	Article	IF	CITATIONS
19	Study of the Change in the Structure and Properties of High-Entropic Alloys during Thermal and Thermomechanical Processing. Russian Journal of Non-Ferrous Metals, 2020, 61, 413-420.	0.6	5
20	Effect of Cu addition on microstructural evolution and hardening of mechanically alloyed Alâ^'Tiâ^'O in-situ composite. Transactions of Nonferrous Metals Society of China, 2020, 30, 1135-1147.	4.2	3
21	Microstructure and Hardness Evolution of Al8Zn7Ni3Mg Alloy after Casting at very Different Cooling Rates. Metals, 2020, 10, 762.	2.3	5
22	Microstructural Characterization and Tensile Properties of Al-Mg-Fe-Ce Alloy at Room and Elevated Temperatures. Jom, 2020, 72, 1619-1626.	1.9	10
23	Influence of Y and Zr on TiAl43Nb4Mo1B0.1 titanium aluminide microstructure and properties. Materials Science and Technology, 2020, 36, 548-555.	1.6	4
24	Effect of manganese addition on thermal and electrical properties of Zr45Cu45Al10 metallic glass. Journal of Non-Crystalline Solids, 2020, 542, 120103.	3.1	0
25	Effect of Nb Addition on Microstructure and Thermal and Mechanical Properties of Fe-Co-Ni-Cu-Cr Multiprincipal-Element (High-Entropy) Alloys in As-Cast and Heat-Treated State. Jom, 2019, 71, 3481-3489.	1.9	16
26	Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 858-868.	4.9	20
27	Effect of high-pressure torsion on the tendency to plastic flow in bulk amorphous alloys based on Zr. Materials Letters, 2019, 256, 126631.	2.6	12
28	High-Frequency soft magnetic properties of Fe-Si-B-P-Mo-Cu amorphous and nanocrystalline alloys. Journal of Non-Crystalline Solids, 2019, 526, 119702.	3.1	27
29	Effect of Melt Spinning and Nitriding on the Structure and Magnetic Hysteresis Properties of (Nd1) Tj ETQq1 1	0.784314	rgBŢ /Overlo
30	Structure and magnetic hysteresis Properties of NdFe ₁₁ Ti based alloys and their nitrides after different methods of obtaining. Journal of Physics: Conference Series, 2019, 1238, 012006.	0.4	1
31	Controlling the Curie temperature in amorphous glass coated microwires by heat treatment. Journal of Alloys and Compounds, 2019, 802, 36-40.	5.5	6
32	Processing and Microstructural Characterization of Metallic Powders Produced from Chips of AA2024 Alloy. Jom, 2019, 71, 2986-2995.	1.9	11
33	Significant Mechanical Softening of an Al-Y-Ni-Co Metallic Glass on Cold and Hot Rolling. Jom, 2019, 71, 4079-4085.	1.9	6
34	Phase separation process preventing thermal embrittlement of a Zr-Cu-Fe-Al bulk metallic glass. Scripta Materialia, 2019, 167, 31-36.	5.2	29
35	Nanocrystallization, good soft magnetic properties and ultrahigh mechanical strength for Fe82-85B13-16Si1Cu1 amorphous alloys. Journal of Alloys and Compounds, 2019, 785, 25-37.	5.5	56
36	Low-Cost Mechanically Alloyed Copper-Based Composite Reinforced with Silicate Glass Particles for Thermal Applications. Jom, 2019, 71, 995-1001.	1.9	9

#	Article	IF	CITATIONS
37	EFFECT OF SCRAP USING IN CHARGE ON THE STRUCTURE AND PROPERTIES OF ZhS6U NICKEL-BASED SUPERALLOY. PART 1. MICROSTRUCTURE ANALYSIS AND PHASE COMPOSITION OF ZhS6U ALLOY PREPARED WITH SCRAP. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2019, 62, 360-365.	0.3	1
38	Effect of scrap using in charge on the microstructure and properties of ZhS6U nickel-based superalloy. Part 2. Structure analysis and mechanical properties of ZhS6U prepared with scrap. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2019, 62, 525-530.	0.3	0
39	On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses. Metals and Materials International, 2018, 24, 481-488.	3.4	10
40	Unusual crystallization of Al85Y8Ni5Co2 metallic glass observed in situ in TEM at different heating rates. Intermetallics, 2018, 94, 192-199.	3.9	16
41	Effect of Multiple Alloying Elements on the Glass-Forming Ability, Thermal Stability, and Crystallization Behavior of Zr-Based Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 644-651.	2.2	5
42	Structure and magnetic hysteresis properties of rapidly quenched Nd _{1-<i>x</i>} Ce _{ <i>x</i>} (Fe _{0.75} Co _{0.25}) ₁₁ Ti(<i>x</i> = 0-0.3) based alloys after annealing. Journal of Physics: Conference Series, 2018, 1134, 012074.	0.4	0
43	Tunable Magnetic Properties of Glass-Coated Microwires by Initial Technical Parameters. IEEE Transactions on Magnetics, 2018, 54, 1-6.	2.1	7
44	Influence of Annealing at Various Temperatures on the Structure and Hardness of Amorphous Ribbons of the Al85Y8Ni5Co2 Alloy. Russian Journal of Non-Ferrous Metals, 2018, 59, 520-526.	0.6	2
45	Investigation of the Structure and Properties of the Fe-Ni-Co-Cu-V Multiprincipal Element Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5646-5652.	2.2	9
46	Soft magnetic properties of Fe82-83B14-15Si2C0.5-1 amorphous alloys with high saturation magnetization above 1.7 T. Journal of Non-Crystalline Solids, 2018, 500, 173-180.	3.1	30
47	Influence of Al ₃ Ni crystallisation origin particles on hot deformation behaviour of aluminium based alloys. Philosophical Magazine, 2017, 97, 572-590.	1.6	7
48	Characterization of nanostructured Cu Cr bulk composites prepared by high-energy mechanical alloying. Materials Chemistry and Physics, 2016, 177, 1-7.	4.0	12
49	Ordering processes in Fe-Ga alloys studied by positron annihilation lifetime spectroscopy. Materials Letters, 2016, 171, 46-49.	2.6	17
50	Microstructure and material characterization of 6063/B4C and 1545K/B4C composites produced by two stir casting techniques for nuclear applications. Journal of Alloys and Compounds, 2016, 664, 317-320.	5.5	40
51	Microstructure, mechanical properties, and crystallization behavior of Zr-based bulk metallic glasses prepared under a low vacuum. Journal of Alloys and Compounds, 2016, 654, 87-94.	5.5	19
52	Diffusionless nature of D0 3 Â→ÂL1 2 transition in Fe 3 Ga alloys. Journal of Alloys and Compounds, 2016, 656, 897-902.	5.5	31
53	Studies of the structure and mechanical properties of Ti43.2Zr7.8Cu40.8Ni7.2Co1 alloy containing amorphous and crystalline phases. Physics of Metals and Metallography, 2015, 116, 684-689.	1.0	4
54	Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability. Materials Chemistry and Physics, 2015, 162, 197-206.	4.0	29

ANDREY BAZLOV

#	Article	IF	CITATIONS
55	Structure and anelasticity of Fe3Ga and Fe3(Ga,Al) type alloys. Journal of Alloys and Compounds, 2015, 644, 959-967.	5.5	27
56	Nanostructured Zr-Pd Metallic Glass Thin Film for Biochemical Applications. Scientific Reports, 2015, 5, 7799.	3.3	56
57	Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses. Acta Materialia, 2015, 82, 396-402.	7.9	33
58	Glass-formation and deformation behavior of Ni–Pd–P–B alloy. Journal of Alloys and Compounds, 2015, 619, 509-512.	5.5	7
59	Investigation and simulation of crystallization of bulk zirconium-based metallic glasses. Russian Journal of Non-Ferrous Metals, 2014, 55, 31-36.	0.6	4
60	Development of mathematical models of superplasticity properties as a function of parameters of aluminum alloys of Al-Mg-Si system. Physics of Metals and Metallography, 2013, 114, 272-278.	1.0	8
61	Structure and mechanical properties of Ni-Cu-Ti-Zr composite materials with amorphous phase. Physics of Metals and Metallography, 2013, 114, 773-778.	1.0	12
62	Simulation of Flow Stress of Single-Phase Aluminum Alloys of the Al – Mg, Al – Cu and Al – Zn Systems in the Process of Hot Deformation. Metal Science and Heat Treatment, 2013, 55, 393-396.	0.6	2
63	Comparative analysis of the structure of palladium-based bulk metallic glasses prepared by treatment of melts with flux. Physics of the Solid State, 2013, 55, 1985-1990.	0.6	6
64	Study of the structure and properties of a wrought Al–Mg–Mn aluminum alloy on a Gleeble 3800 simulator designed for physical modeling of thermomechanical processes. Metallurgist, 2012, 56, 618-623.	0.6	4
65	Phase transformations in Zr-based bulk metallic glass cyclically loaded before plastic yielding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 358-362.	5.6	22