Juliana G M Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2590312/publications.pdf Version: 2024-02-01

LILLANA C. M. SOARES

#	Article	IF	CITATIONS
1	A Conserved Pattern of Differential Expansion of Cortical Areas in Simian Primates. Journal of Neuroscience, 2013, 33, 15120-15125.	1.7	172
2	Parallel Evolution of Cortical Areas Involved in Skilled Hand Use. Journal of Neuroscience, 2007, 27, 10106-10115.	1.7	164
3	Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 709-731.	1.8	138
4	Cortical afferents of visual area MT in the <i>Cebus</i> monkey: Possible homologies between New and old World monkeys. Visual Neuroscience, 1993, 10, 827-855.	0.5	107
5	Electrophysiological Imaging of Functional Architecture in the Cortical Middle Temporal Visual Area of Cebus apellaMonkey. Journal of Neuroscience, 2003, 23, 3881-3898.	1.7	52
6	Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella). Frontiers in Systems Neuroscience, 2014, 8, 123.	1.2	42
7	Laminar, columnar and topographic aspects of ocular dominance in the primary visual cortex ofCebus monkeys. Experimental Brain Research, 1992, 88, 249-264.	0.7	38
8	Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 580-590.	0.9	31
9	Connectional subdivision of the claustrum: two visuotopic subdivisions in the macaque. Frontiers in Systems Neuroscience, 2014, 8, 63.	1.2	29
10	Automatic mapping of visual cortex receptive fields: A fast and precise algorithm. Journal of Neuroscience Methods, 2014, 221, 112-126.	1.3	28
11	Quantification of Early Stages of Cortical Reorganization of the Topographic Map of V1 Following Retinal Lesions in Monkeys. Cerebral Cortex, 2014, 24, 1-16.	1.6	24
12	Controversies about the visual areas located at the anterior border of area V2 in primates. Visual Neuroscience, 2015, 32, E019.	0.5	20
13	Differential expression of Zif268 and c-Fos in the primary visual cortex and lateral geniculate nucleus of normalCebus monkeys and after monocular lesions. Journal of Comparative Neurology, 2005, 482, 166-175.	0.9	16
14	Cone photopigment variations in Cebus apella monkeys evidenced by electroretinogram measurements and genetic analysis. Vision Research, 2010, 50, 99-106.	0.7	16
15	Cortical Afferents of Area 10 in Cebus Monkeys: Implications for the Evolution of the Frontal Pole. Cerebral Cortex, 2019, 29, 1473-1495.	1.6	16
16	Distribution of NADPH-diaphorase in the superior colliculus of Cebus monkeys, and co-localization with calcium-binding proteins. Neuroscience Research, 2003, 46, 475-483.	1.0	15
17	Distribution of neurofilament proteins in the lateral geniculate nucleus, primary visual cortex, and area MT of adult <i>Cebus</i> monkeys. Journal of Comparative Neurology, 2008, 508, 605-614.	0.9	14
18	Feedforward and feedback connections and their relation to the cytox modules of V2 inCebusmonkeys. Journal of Comparative Neurology, 2014, 522, 3091-3105.	0.9	10

JULIANA G M SOARES

#	Article	IF	CITATIONS
19	Precise visuotopic organization of the blind spot representation in primate V1. Journal of Neurophysiology, 2015, 113, 3588-3599.	0.9	10
20	Distribution of calbindin-28kD and parvalbumin in V1 in normal adult Cebus apella monkeys and in monkeys with retinal lesions. Brain Research, 2006, 1117, 1-11.	1.1	9
21	Two-dimensional map of direction selectivity in cortical visual area MT of Cebus monkey. Anais Da Academia Brasileira De Ciencias, 2002, 74, 463-476.	0.3	7
22	The Role of the Pulvinar in Spatial Visual Attention. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 57-60.	1.0	6
23	Partitioning of the primate intraparietal cortex based on connectivity pattern and immunohistochemistry for Catâ€301 and SMIâ€32. Journal of Comparative Neurology, 2019, 527, 694-717.	0.9	6
24	Time course of cytochrome oxidase blob plasticity in the primary visual cortex of adult monkeys after retinal laser lesions. Journal of Comparative Neurology, 2019, 527, 600-613.	0.9	3
25	The role of feedback projections in feature tuning and neuronal excitability in the early primate visual system. Brain Structure and Function, 2021, 226, 2881-2895.	1.2	3
26	Connectivity of the Pulvinar. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 19-29.	1.0	3
27	Effects of MT lesions on visuomotor performance in macaques. Progress in Neurobiology, 2020, 195, 101931.	2.8	3
28	Lower gamma band in the classification of left and right elbow movement in real and imaginary tasks. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	2
29	Neuronal response properties across cytochrome oxidase stripes in primate V2. Journal of Comparative Neurology, 2019, 527, 651-667.	0.9	2
30	Tangential distribution of cell type and direction selectivity in monkey area MT. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20190564.	0.3	2
31	Modulation of Pulvinar Neuronal Activity by Arousal. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 49-51.	1.0	1
32	Decoding elbow movement with Kalman Filter using non-invasive EEC. , 2019, , .		1
33	Introduction. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 1-4.	1.0	1
34	Comparative Pulvinar Organization Across Different Primate Species. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 37-37.	1.0	1
35	Response Properties of Pulvinar Neurons Studied with Single-Unit Electrophysiological Recordings. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 39-47.	1.0	1
36	Visual Map Representations in the Primate Pulvinar. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 15-18.	1.0	1

JULIANA G M SOARES

#	Article	IF	CITATIONS
37	Cytoarchitecture and Myeloarchitecture of the Pulvinar. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 5-8.	1.0	1
38	Development of a closed-loop BMI for elbow movement assistance based on kinematical decoding. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	0
39	Reestablishing the Chemoarchitectural Borders Based on Electrophysiological and Connectivity Data. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 31-34.	1.0	0
40	Visual Topography of the Pulvinar Projection Zones. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 35-36.	1.0	0
41	Chemoarchitecture of the Pulvinar. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 9-14.	1.0	0
42	GABA Inactivation of the Pulvinar. Advances in Anatomy, Embryology and Cell Biology, 2018, 225, 53-56.	1.0	0