
Jin-Hong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2590059/publications.pdf Version: 2024-02-01

IN-HONG 7HU

#	Article	IF	CITATIONS
1	Prediction of prognosis and immunotherapy response with a robust immune-related lncRNA pair signature in lung adenocarcinoma. Cancer Immunology, Immunotherapy, 2022, 71, 1295-1311.	2.0	17
2	LncRNA HAR1A Suppresses the Development of Non-Small Cell Lung Cancer by Inactivating the STAT3 Pathway. Cancers, 2022, 14, 2845.	1.7	6
3	Identification of downstream signaling cascades of ACK1 and prognostic classifiers in non-small cell lung cancer. Aging, 2021, 13, 4482-4502.	1.4	11
4	<i>H19</i> gene polymorphisms and Wilms tumor risk in Chinese children: a fourâ€center caseâ€control study. Molecular Genetics & Genomic Medicine, 2021, 9, e1584.	0.6	5
5	LIN28A polymorphisms and hepatoblastoma susceptibility in Chinese children. Journal of Cancer, 2021, 12, 1373-1378.	1.2	3
6	Association between NER pathway gene polymorphisms and neuroblastoma risk in an eastern Chinese population. Molecular Therapy - Oncolytics, 2021, 20, 3-11.	2.0	5
7	UBE2T Contributes to the Prognosis of Esophageal Squamous Cell Carcinoma. Pathology and Oncology Research, 2021, 27, 632531.	0.9	10
8	YTHDC1 gene polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. Gene, 2021, 783, 145571.	1.0	3
9	UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma. Journal of Translational Medicine, 2021, 19, 374.	1.8	33
10	Polymorphisms in METTL3 gene and hepatoblastoma risk in Chinese children: A seven-center case-control study. Gene, 2021, 800, 145834.	1.0	8
11	Combined inhibition of ACK1 and AKT shows potential toward targeted therapy against KRAS-mutant non-small-cell lung cancer. Bosnian Journal of Basic Medical Sciences, 2021, 21, 198-207.	0.6	5
12	Editorial: Molecular Diagnostics of Pediatric Cancer. Frontiers in Oncology, 2021, 11, 777662.	1.3	0
13	Development of immune gene pair-based signature predictive of prognosis and immunotherapy in esophageal cancer. Annals of Translational Medicine, 2021, 9, 1591-1591.	0.7	4
14	Integrated analysis of immune infiltration in esophageal carcinoma as prognostic biomarkers. Annals of Translational Medicine, 2021, 9, 1697-1697.	0.7	4
15	METTL14 gene polymorphisms decrease Wilms tumor susceptibility in Chinese children. BMC Cancer, 2021, 21, 1294.	1.1	7
16	YTHDF2 Gene rs3738067 A>G Polymorphism Decreases Neuroblastoma Risk in Chinese Children: Evidence From an Eight-Center Case-Control Study. Frontiers in Medicine, 2021, 8, 797195.	1.2	7
17	<i>LIN28A </i> gene polymorphisms modify neuroblastoma susceptibility: A fourâ€centre caseâ€control study. Journal of Cellular and Molecular Medicine, 2020, 24, 1059-1066.	1.6	15
18	METTL14 Gene Polymorphisms Confer Neuroblastoma Susceptibility: An Eight-Center Case-Control Study. Molecular Therapy - Nucleic Acids, 2020, 22, 17-26.	2.3	41

#	Article	IF	CITATIONS
19	Comprehensive Analysis of the Immune Implication of ACK1 Gene in Non-small Cell Lung Cancer. Frontiers in Oncology, 2020, 10, 1132.	1.3	20
20	<i>YTHDC1</i> gene polymorphisms and hepatoblastoma susceptibility in Chinese children: A sevenâ€center case–control study. Journal of Gene Medicine, 2020, 22, e3249.	1.4	17
21	WTAP Gene Variants Confer Hepatoblastoma Susceptibility: A Seven-Center Case-Control Study. Molecular Therapy - Oncolytics, 2020, 18, 118-125.	2.0	24
22	<i>YTHDF1</i> rs6090311 A>G polymorphism reduces Hepatoblastoma risk: Evidence from a seven-center case-control study. Journal of Cancer, 2020, 11, 5129-5134.	1.2	17
23	Correlation between the genetic variants of base excision repair (BER) pathway genes and neuroblastoma susceptibility in eastern Chinese children. Cancer Communications, 2020, 40, 641-646.	3.7	39
24	<i>lncRNA-uc003opf.1</i> rs11752942 A>G polymorphism decreases neuroblastoma risk in Chinese children. Cell Cycle, 2020, 19, 2367-2372.	1.3	4
25	The contribution of WTAP gene variants to Wilms tumor susceptibility. Gene, 2020, 754, 144839.	1.0	9
26	Association of <i>TP53</i> rs1042522 C>G and <i>miRâ€34b/c</i> rs4938723 T>C polymorphisms with hepatoblastoma susceptibility: A sevenâ€center case–control study. Journal of Gene Medicine, 2020, 22, e3182.	1.4	15
27	Association between <i>METTL3</i> gene polymorphisms and neuroblastoma susceptibility: A nineâ€centre caseâ€control study. Journal of Cellular and Molecular Medicine, 2020, 24, 9280-9286.	1.6	20
28	<p>HMGA2 Polymorphisms and Hepatoblastoma Susceptibility: A Five-Center Case-Control Study</p> . Pharmacogenomics and Personalized Medicine, 2020, Volume 13, 51-57.	0.4	8
29	<i>ALKBH5</i> gene polymorphisms and Wilms tumor risk in Chinese children: A fiveâ€center caseâ€control study. Journal of Clinical Laboratory Analysis, 2020, 34, e23251.	0.9	19
30	Contributions and prognostic values of m 6 A RNA methylation regulators in nonâ€smallâ€cell lung cancer. Journal of Cellular Physiology, 2020, 235, 6043-6057.	2.0	52
31	The association of RAN and RANBP2 gene polymerphisms with Wilms tumor risk in Chinese children. Journal of Cancer, 2020, 11, 804-809.	1.2	3
32	HMGA2 Gene rs8756 A>C Polymorphism Reduces Neuroblastoma Risk in Chinese Children: A Four-Center Case-Control Study. OncoTargets and Therapy, 2020, Volume 13, 465-472.	1.0	3
33	Association of MYC gene polymorphisms with neuroblastoma risk in Chinese children: A fourâ€center case–control study. Journal of Gene Medicine, 2020, 22, e3190.	1.4	6
34	<i>LIN28B</i> gene polymorphisms modify hepatoblastoma susceptibility in Chinese children. Journal of Cancer, 2020, 11, 3512-3518.	1.2	11
35	The association of miR34b/c and TP53 gene polymorphisms with Wilms tumor risk in Chinese children. Bioscience Reports, 2020, 40, .	1.1	1
36	<i>TP53</i> Arg72Pro polymorphism and neuroblastoma susceptibility in eastern Chinese children: a three-center case–control study. Bioscience Reports, 2020, 40, .	1.1	1

#	Article	IF	CITATIONS
37	<i>PARP1</i> gene polymorphisms and neuroblastoma susceptibility in Chinese children. Journal of Cancer, 2019, 10, 4159-4164.	1.2	7
38	<i>APEX1</i> Polymorphisms and Neuroblastoma Risk in Chinese Children: A Three-Center Case-Control Study. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-8.	1.9	7
39	Association of miR-34b/c rs4938723 and TP53 Arg72Pro Polymorphisms with Neuroblastoma Susceptibility: Evidence from Seven Centers. Translational Oncology, 2019, 12, 1282-1288.	1.7	8
40	<i>LIN28A</i> gene polymorphisms confer Wilms tumour susceptibility: A fourâ€centre caseâ€control study. Journal of Cellular and Molecular Medicine, 2019, 23, 7105-7110.	1.6	12
41	MYCNgene polymorphisms and Wilms tumor susceptibility in Chinese children. Journal of Clinical Laboratory Analysis, 2019, 33, e22988.	0.9	6
42	The construction and analysis of the aberrant lncRNA-miRNA-mRNA network in non-small cell lung cancer. Journal of Thoracic Disease, 2019, 11, 1772-1778.	0.6	43
43	Investigation of association between LINC00673 rs11655237 C>T and Wilms tumor susceptibility. Journal of Clinical Laboratory Analysis, 2019, 33, e22930.	0.9	5
44	AURKA rs8173 G>C Polymorphism Decreases Wilms Tumor Risk in Chinese Children. Journal of Oncology, 2019, 2019, 1-7.	0.6	7
45	<p>KRAS rs7973450 A>G increases neuroblastoma risk in Chinese children: a four-center case-control study</p> . OncoTargets and Therapy, 2019, Volume 12, 7289-7295.	1.0	4
46	<i>LMO1</i> Super-Enhancer rs2168101 G>T Polymorphism Reduces Wilms Tumor Risk. Journal of Cancer, 2019, 10, 1808-1813.	1.2	4
47	Association of <i>miR-146a, miR-149</i> and <i>miR-196a2</i> polymorphisms with neuroblastoma risk in Eastern Chinese population: a three-center case–control study. Bioscience Reports, 2019, 39, .	1.1	6
48	Association of <i>NEFL</i> Gene Polymorphisms with Wilms' Tumor Susceptibility in Chinese Children. Journal of Oncology, 2019, 2019, 1-7.	0.6	0
49	LIG3 gene polymorphisms and risk of gastric cancer in a Southern Chinese population. Gene, 2019, 705, 90-94.	1.0	6
50	Association between <i>PHOX2B</i> gene rs28647582 T>C polymorphism and Wilms tumor susceptibility. Bioscience Reports, 2019, 39, .	1.1	4
51	Association of KRAS and NRAS gene polymorphisms with Wilms tumor risk: a four-center case-control study. Aging, 2019, 11, 1551-1563.	1.4	28
52	Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer. Aging, 2019, 11, 11440-11462.	1.4	126
53	MYC gene associated polymorphisms and Wilms tumor risk in Chinese children: a four-center case-control study. Annals of Translational Medicine, 2019, 7, 475-475.	0.7	7
54	<i>LINC00673</i> rs11655237 C>T confers neuroblastoma susceptibility in Chinese population. Bioscience Reports, 2018, 38, .	1.1	27

#	Article	IF	CITATIONS
55	Overexpression of FIBCD1 Is Predictive of Poor Prognosis in Gastric Cancer. American Journal of Clinical Pathology, 2018, 149, 474-483.	0.4	10
56	RSRC1 and CPZ gene polymorphisms with neuroblastoma susceptibility in Chinese children. Gene, 2018, 662, 83-87.	1.0	6
57	Lack of associations between AURKA gene polymorphisms and neuroblastoma susceptibility in Chinese children. Bioscience Reports, 2018, 38, .	1.1	7
58	Functional Polymorphisms at ERCC1/XPF Genes Confer Neuroblastoma Risk in Chinese Children. EBioMedicine, 2018, 30, 113-119.	2.7	85
59	The correlation between <i><scp>LIN</scp>28B</i> gene potentially functional variants and Wilms tumor susceptibility in Chinese children. Journal of Clinical Laboratory Analysis, 2018, 32, .	0.9	20
60	LMO1 Gene Polymorphisms Reduce Neuroblastoma Risk in Eastern Chinese Children: A Three-Center Case-Control Study. Frontiers in Oncology, 2018, 8, 468.	1.3	10
61	Association between NEFL Gene Polymorphisms and Neuroblastoma Risk in Chinese Children: A Two-Center Case-Control Study. Journal of Cancer, 2018, 9, 535-539.	1.2	6
62	Association between NER Pathway Gene Polymorphisms and Wilms Tumor Risk. Molecular Therapy - Nucleic Acids, 2018, 12, 854-860.	2.3	39
63	Base Excision Repair Gene Polymorphisms and Wilms Tumor Susceptibility. EBioMedicine, 2018, 33, 88-93.	2.7	31
64	<i>miR-423</i> rs6505162 C>A polymorphism contributes to decreased Wilms tumor risk. Journal of Cancer, 2018, 9, 2460-2465.	1.2	11
65	Genetic variants in the nucleotide excision repair pathway genes and gastric cancer susceptibility in a southern Chinese population. Cancer Management and Research, 2018, Volume 10, 765-774.	0.9	27
66	<i>LMO1</i> super-enhancer polymorphism rs2168101 G>T correlates with decreased neuroblastoma risk in Chinese children. Journal of Cancer, 2018, 9, 1592-1597.	1.2	17
67	Association of Common Genetic Variants in Pre-microRNAs and Neuroblastoma Susceptibility: A Two-Center Study in Chinese Children. Molecular Therapy - Nucleic Acids, 2018, 11, 1-8.	2.3	98
68	Associations between lncRNA MEG3 polymorphisms and neuroblastoma risk in Chinese children. Aging, 2018, 10, 481-491.	1.4	40
69	RAN/RANBP2 polymorphisms and neuroblastoma risk in Chinese children: a three-center case-control study. Aging, 2018, 10, 808-818.	1.4	22
70	<i>XPG</i> rs17655 G>C polymorphism associated with cancer risk: evidence from 60 studies. Aging, 2018, 10, 1073-1088.	1.4	10
71	XRCC1 gene polymorphisms and risk of neuroblastoma in Chinese children. Aging, 2018, 10, 2944-2953.	1.4	17
72	BARD1 Gene Polymorphisms Confer Nephroblastoma Susceptibility. EBioMedicine, 2017, 16, 101-105.	2.7	40

#	Article	IF	CITATIONS
73	Genetic Variations of GWAS-Identified Genes and Neuroblastoma Susceptibility: a Replication Study in Southern Chinese Children. Translational Oncology, 2017, 10, 936-941.	1.7	49
74	The association between XPG polymorphisms and cancer susceptibility. Medicine (United States), 2017, 96, e7467.	0.4	17
75	Association Between <i>HACE1</i> Gene Polymorphisms and Wilms' Tumor Risk in a Chinese Population. Cancer Investigation, 2017, 35, 633-638.	0.6	13
76	MDM2 promoter del1518 polymorphism and cancer risk: evidence from 22,931 subjects. OncoTargets and Therapy, 2017, Volume 10, 3773-3780.	1.0	6
77	HSD17B12 gene rs11037575 C>T polymorphism confers neuroblastoma susceptibility in a Southern Chinese population. OncoTargets and Therapy, 2017, Volume 10, 1969-1975.	1.0	6
78	Common variations within HACE1 gene and neuroblastoma susceptibility in a Southern Chinese population. OncoTargets and Therapy, 2017, Volume 10, 703-709.	1.0	9
79	Association between TP53 gene Arg72Pro polymorphism and Wilms' tumor risk in a Chinese population. OncoTargets and Therapy, 2017, Volume 10, 1149-1154.	1.0	25
80	The <i>TP53</i> gene rs1042522 C>G polymorphism and neuroblastoma risk in Chinese children. Aging, 2017, 9, 852-859.	1.4	58
81	<i>NFKB1</i> -94insertion/deletion ATTG polymorphism and cancer risk: Evidence from 50 case-control studies. Oncotarget, 2017, 8, 9806-9822.	0.8	49
82	Functional <i>FGFR4</i> Gly388Arg polymorphism contributes to cancer susceptibility: Evidence from meta-analysis. Oncotarget, 2017, 8, 25300-25309.	0.8	14
83	<i>XPG</i> gene polymorphisms and cancer susceptibility: evidence from 47 studies. Oncotarget, 2017, 8, 37263-37277.	0.8	20
84	Associations between <i>LMO1</i> gene polymorphisms and Wilms' tumor susceptibility. Oncotarget, 2017, 8, 50665-50672.	0.8	13
85	XPG gene rs751402 C>T polymorphism and cancer risk: Evidence from 22 publications. Oncotarget, 2017, 8, 53613-53622.	0.8	5
86	Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes, 2016, 7, 73.	1.0	24
87	The association between <i>RFC1</i> G80A polymorphism and cancer susceptibility: Evidence from 33 studies. Journal of Cancer, 2016, 7, 144-152.	1.2	9
88	The Association between GWAS-identified <i>BARD1 </i> Gene SNPs and Neuroblastoma Susceptibility in a Southern Chinese Population. International Journal of Medical Sciences, 2016, 13, 133-138.	1.1	26
89	Polymorphisms in the XPC gene and gastric cancer susceptibility in a Southern Chinese population. OncoTargets and Therapy, 2016, Volume 9, 5513-5519.	1.0	18
90	Lack of Associations between <i>XPC</i> Gene Polymorphisms and Neuroblastoma Susceptibility in a Chinese Population. BioMed Research International, 2016, 2016, 1-6.	0.9	9

#	Article	IF	CITATIONS
91	<i>XPG</i> Gene Polymorphisms Contribute to Colorectal Cancer Susceptibility: A Two-Stage Case-Control Study. Journal of Cancer, 2016, 7, 1731-1739.	1.2	27
92	High Expression of PHGDH Predicts Poor Prognosis in Non–Small Cell Lung Cancer. Translational Oncology, 2016, 9, 592-599.	1.7	56
93	Association of potentially functional variants in the <i><scp>XPG</scp></i> gene with neuroblastoma risk in a Chinese population. Journal of Cellular and Molecular Medicine, 2016, 20, 1481-1490.	1.6	105
94	Potentially functional polymorphisms in the <i><scp>LIN</scp>28B</i> gene contribute to neuroblastoma susceptibility in Chinese children. Journal of Cellular and Molecular Medicine, 2016, 20, 1534-1541.	1.6	40
95	Increased Expression of PHGDH and Prognostic Significance in Colorectal Cancer. Translational Oncology, 2016, 9, 191-196.	1.7	59
96	Polymorphisms in the <i><scp>AKT</scp>1</i> and <i><scp>AKT</scp>2</i> genes and oesophageal squamous cell carcinoma risk in an Eastern Chinese population. Journal of Cellular and Molecular Medicine, 2016, 20, 666-677.	1.6	31
97	Evaluation of GWAS-identified SNPs at 6p22 with neuroblastoma susceptibility in a Chinese population. Tumor Biology, 2016, 37, 1635-1639.	0.8	37
98	Association between genetic variants in the XPG gene and gastric cancer risk in a Southern Chinese population. Aging, 2016, 8, 3311-3320.	1.4	30
99	MDM4 rs4245739 A > C polymorphism correlates with reduced overall cancer risk in a meta-analysis of 69477 subjects. Oncotarget, 2016, 7, 71718-71726.	0.8	15
100	<i>XPG</i> rs2296147 T>C polymorphism predicted clinical outcome in colorectal cancer. Oncotarget, 2016, 7, 11724-11732.	0.8	17
101	<i>LMO1</i> gene polymorphisms contribute to decreased neuroblastoma susceptibility in a Southern Chinese population. Oncotarget, 2016, 7, 22770-22778.	0.8	31
102	Association of three 8q24 polymorphisms with prostate cancer susceptibility: evidence from a meta-analysis with 50,854 subjects. Scientific Reports, 2015, 5, 12069.	1.6	12
103	Associations of PI3KR1 and mTOR Polymorphisms with Esophageal Squamous Cell Carcinoma Risk and Gene-Environment Interactions in Eastern Chinese Populations. Scientific Reports, 2015, 5, 8250.	1.6	48
104	Association of <i>IL10</i> -819C>T and -592C>A Polymorphisms with Non-Hodgkin Lymphoma Susceptibility: Evidence from Published Studies. Journal of Cancer, 2015, 6, 709-716.	1.2	5
105	Association of Interleukin-10 â~'3575T>A and â~'1082A>G polymorphisms with non-Hodgkin lymphoma susceptibility: a comprehensive review and meta-analysis. Molecular Genetics and Genomics, 2015, 290, 2063-2073.	1.0	10
106	The Association Between <i>NQO1</i> Pro187Ser Polymorphism and Urinary System Cancer Susceptibility: A Meta-Analysis of 22 Studies. Cancer Investigation, 2015, 33, 39-40.	0.6	11
107	Association of the Asp312Asn and Lys751Gln polymorphisms in the XPD gene with the risk of non-Hodgkin's lymphoma: evidence from a meta-analysis. Chinese Journal of Cancer, 2015, 34, 108-14.	4.9	326
108	No association betweenMTRrs1805087 A > G polymorphism and non-Hodgkin lymphoma susceptibility: evidence from 11 486 subjects. Leukemia and Lymphoma, 2015, 56, 763-767.	0.6	13

#	Article	IF	CITATIONS
109	Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: Evidence from a meta-analysis. Scientific Reports, 2015, 4, 6159.	1.6	83
110	The Association between NQO1 Pro187Ser Polymorphism and Bladder Cancer Susceptibility: A Meta-Analysis of 15 Studies. PLoS ONE, 2015, 10, e0116500.	1.1	9
111	PSCA s2294008 C>T and rs2976392 C>A polymorphisms contribute to cancer susceptibility: evidence from published studies. Genes and Cancer, 2015, 6, 254-264.	0.6	7
112	Association Studies of ERCC1 Polymorphisms with Lung Cancer Susceptibility: A Systematic Review and Meta-Analysis. PLoS ONE, 2014, 9, e97616.	1.1	30
113	The association between the polymorphisms of TNF-α and non-Hodgkin lymphoma: a meta-analysis. Tumor Biology, 2014, 35, 12509-12517.	0.8	15
114	Xeroderma pigmentosum complementation group D (XPD) gene polymorphisms contribute to bladder cancer risk: a meta-analysis. Tumor Biology, 2014, 35, 3905-3915.	0.8	13
115	Smoking and hOGG1 Ser326Cys polymorphism contribute to lung cancer risk: evidence from a meta-analysis. Tumor Biology, 2014, 35, 1609-1618.	0.8	12
116	Association of BRCA2 N372H polymorphism with cancer susceptibility: A comprehensive review and meta-analysis. Scientific Reports, 2014, 4, 6791.	1.6	33
117	Association between the PARP1 Val762Ala Polymorphism and Cancer Risk: Evidence from 43 Studies. PLoS ONE, 2014, 9, e87057.	1.1	31
118	Follistatin Improves Skeletal Muscle Healing after Injury and Disease through an Interaction with Muscle Regeneration, Angiogenesis, and Fibrosis. American Journal of Pathology, 2011, 179, 915-930.	1.9	97
119	Resveratrol enhances the anti-tumor activity of the mTOR inhibitor rapamycin in multiple breast cancer cell lines mainly by suppressing rapamycin-induced AKT signaling. Cancer Letters, 2011, 301, 168-176.	3.2	104
120	The Application of Three-Dimensional Collagen-Scaffolds Seeded with Myoblasts to Repair Skeletal Muscle Defects. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	39
121	Interaction between macrophages, TGFâ€Î²1, and the COXâ€2 pathway during the inflammatory phase of skeletal muscle healing after injury. Journal of Cellular Physiology, 2008, 214, 405-412.	2.0	96
122	Improved Muscle Healing after Contusion Injury by the Inhibitory Effect of Suramin on Myostatin, a Negative Regulator of Muscle Growth. American Journal of Sports Medicine, 2008, 36, 2354-2362.	1.9	93
123	Relationships between Transforming Growth Factor-β1, Myostatin, and Decorin. Journal of Biological Chemistry, 2007, 282, 25852-25863.	1.6	231
124	Decorin Gene Transfer Promotes Muscle Cell Differentiation and Muscle Regeneration. Molecular Therapy, 2007, 15, 1616-1622.	3.7	119
125	Vanadate ingestion enhances the organization and collagen fibril diameters of rat healing medical collateral ligaments. Knee Surgery, Sports Traumatology, Arthroscopy, 2006, 14, 750-755.	2.3	14