David Bekaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2589939/publications.pdf

Version: 2024-02-01

394421 501196 1,827 31 19 28 citations h-index g-index papers 36 36 36 1967 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Value of InSAR for Monitoring Land Subsidence to Support Water Management in the San Joaquin Valley, California. Journal of the American Water Resources Association, 2022, 58, 995-1001.	2.4	8
2	Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California. Scientific Reports, 2022, 12, 3867.	3.3	14
3	Using InSAR Time Series to Monitor Surface Fractures and Fissures in the Al-Yutamah Valley, Western Arabia. Remote Sensing, 2022, 14, 1769.	4.0	2
4	Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates. Geophysical Research Letters, 2022, 49, .	4.0	10
5	Cluster-Based Empirical Tropospheric Corrections Applied to InSAR Time Series Analysis. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 2204-2212.	6.3	17
6	Ocean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise. Communications Earth & Environment, 2021, 2, .	6.8	10
7	InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sensing of Environment, 2020, 249, 111983.	11.0	97
8	Toward Sustained Monitoring of Subsidence at the Coast Using InSAR and GPS: An Application in Hampton Roads, Virginia. Geophysical Research Letters, 2020, 47, e2020GL090013.	4.0	29
9	Understanding of Contemporary Regional Seaâ€Level Change and the Implications for the Future. Reviews of Geophysics, 2020, 58, e2019RG000672.	23.0	74
10	Tropospheric corrections for InSAR: Statistical assessments and applications to the Central United States and Mexico. Remote Sensing of Environment, 2019, 232, 111326.	11.0	62
11	Rapid Geodetic Analysis of Subduction Zone Earthquakes Leveraging a 3â€D Elastic Green's Function Library. Geophysical Research Letters, 2019, 46, 2475-2483.	4.0	8
12	Exploiting UAVSAR for a comprehensive analysis of subsidence in the Sacramento Delta. Remote Sensing of Environment, 2019, 220, 124-134.	11.0	20
13	Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nature Communications, 2018, 9, 1392.	12.8	75
14	Communities and Areas at Intensive Risk in the Mid-Atlantic Region: A Reanalysis of 2011 Hurricane Irene with Future Sea Level Rise and Land Subsidence. , 2018, , .		5
15	NASA's Mid-Atlantic Communities and Areas at Intensive Risk Demonstration: : Translating Compounding Hazards to Societal Risk. , 2018, , .		5
16	Tracking the weight of Hurricane Harvey's stormwater using GPS data. Science Advances, 2018, 4, eaau2477.	10.3	62
17	Integrated Ocean, Earth, and Atmospheric Observations for Resilience Planning in Hampton Roads, Virginia. Marine Technology Society Journal, 2018, 52, 68-83.	0.4	7
18	Coseismic deformation and triggered landslides of the 2016 <i>M_w</i> 6.2 Amatrice earthquake in Italy. Geophysical Research Letters, 2017, 44, 1266-1274.	4.0	98

#	Article	IF	CITATION
19	Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data. Geophysical Research Letters, 2017, 44, 10,977.	4.0	25
20	Surface Deformation of North entral Oklahoma Related to the 2016 <i>M</i> _w Â5.8 Pawnee Earthquake from SAR Interferometry Time Series. Seismological Research Letters, 2017, 88, 971-982.	1.9	34
21	Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA). Scientific Reports, 2017, 7, 14752.	3.3	59
22	Decomposing DInSAR Time-Series into 3-D in Combination with GPS in the Case of Low Strain Rates: An Application to the Hyblean Plateau, Sicily, Italy. Remote Sensing, 2017, 9, 33.	4.0	22
23	Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. Journal of Geophysical Research: Solid Earth, 2016, 121, 3867-3887.	3.4	81
24	Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements. Journal of Geophysical Research: Solid Earth, 2016, 121, 9000-9019.	3.4	86
25	Geodetic observations of postseismic creep in the decade after the 1999 Izmit earthquake, Turkey: Implications for a shallow slip deficit. Journal of Geophysical Research: Solid Earth, 2016, 121, 2980-3001.	3.4	40
26	A Network Inversion Filter combining GNSS and InSAR for tectonic slip modeling. Journal of Geophysical Research: Solid Earth, 2016, 121, 2069-2086.	3.4	25
27	Multi-temporal InSAR evidence of ground subsidence induced by groundwater withdrawal: the Montellano aquifer (SW Spain). Environmental Earth Sciences, 2016, 75, 1.	2.7	15
28	GPS and DInSAR timeseries SISTEM integration for interseismic motion detection — A case study from the Hyblean Plateau in South-East Sicily. , 2015, , .		0
29	A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research: Solid Earth, 2015, 120, 1345-1356.	3.4	168
30	Reassessing the 2006 Guerrero slowâ€slip event, Mexico: Implications for large earthquakes in the Guerrero Gap. Journal of Geophysical Research: Solid Earth, 2015, 120, 1357-1375.	3.4	52
31	Recent advances in SAR interferometry time series analysis for measuring crustal deformation.	2.2	617