Jong-Duk Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2589901/publications.pdf

Version: 2024-02-01

124 papers 3,752 citations

186265
28
h-index

138484 58 g-index

126 all docs

126 docs citations

times ranked

126

5784 citing authors

#	Article	IF	CITATIONS
1	A Facile and Template-Free Hydrothermal Synthesis of Mn ₃ O ₄ Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability. Chemistry of Materials, 2012, 24, 1158-1164.	6.7	728
2	Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochimica Acta, 2011, 56, 4849-4857.	5.2	287
3	Hierarchical Microspheres Based on α-Ni(OH) ₂ Nanosheets Intercalated with Different Anions: Synthesis, Anion Exchange, and Effect of Intercalated Anions on Electrochemical Capacitance. Journal of Physical Chemistry C, 2011, 115, 19445-19454.	3.1	213
4	Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochimica Acta, 2012, 85, 459-466.	5.2	158
5	Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. Journal of Controlled Release, 2006, 114, 60-68.	9.9	103
6	Effects of Grafted Alkyl Groups on Aggregation Behavior of Amphiphilic Poly(aspartic acid). Langmuir, 2001, 17, 7501-7506.	3.5	101
7	Bioadhesive interaction and hypoglycemic effect of insulin-loaded lectin–microparticle conjugates in oral insulin delivery system. Journal of Controlled Release, 2005, 102, 525-538.	9.9	92
8	Magnetic properties of \hat{I}^3 -Fe2O3 nanoparticles made by coprecipitation method. Physica Status Solidi (B): Basic Research, 2004, 241, 1593-1596.	1.5	84
9	HER2/neu Antibody Conjugated Poly(amino acid)-Coated Iron Oxide Nanoparticles for Breast Cancer MR Imaging. Biomacromolecules, 2010, 11, 2866-2872.	5.4	82
10	Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone). Polymer, 2003, 44, 583-591.	3.8	80
11	Biodegradable Polymersomes from Poly(2-hydroxyethyl aspartamide) Grafted with Lactic Acid Oligomers in Aqueous Solution. Macromolecules, 2006, 39, 4938-4940.	4.8	80
12	Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresource Technology, 2013, 149, 579-581.	9.6	70
13	Demulsification of water-in-crude oil emulsions by a continuous electrostatic dehydrator. Separation Science and Technology, 2002, 37, 1307-1320.	2.5	62
14	Self-aggregates of poly(2-hydroxyethyl aspartamide) copolymers loaded with methotrexate by physical and chemical entrapments. Journal of Controlled Release, 2002, 81, 135-144.	9.9	62
15	Rapid Evaluation of Water-in-Oil (w/o) Emulsion Stability by Turbidity Ratio Measurements. Journal of Colloid and Interface Science, 2000, 230, 213-215.	9.4	60
16	Poly(amino acid)-coated iron oxide nanoparticles as ultra-small magnetic resonance probes. Journal of Materials Chemistry, 2009, 19, 4566.	6.7	58
17	A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in a gelatin matrix and its thermally actuated permeation of 4-acetamidophen. Journal of Controlled Release, 1996, 38, 39-47.	9.9	56
18	Synthesis of ZnO/activated carbon with high surface area for supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 482-490.	4.7	55

#	Article	IF	Citations
19	Hierarchical zinc oxide/graphene oxide composites for energy storage devices. Journal of Alloys and Compounds, 2018, 739, 522-528.	5.5	43
20	Intratympanic delivery of oligoarginine-conjugated nanoparticles as a gene (or drug) carrier to the inner ear. Biomaterials, 2015, 73, 243-253.	11.4	40
21	Core–shell nanogel of PEG–poly(aspartic acid) and its pH-responsive release of rh-insulin. Soft Matter, 2013, 9, 1781-1788.	2.7	39
22	Alignment control of liquid crystals on surface relief gratings. Liquid Crystals, 2000, 27, 1633-1640.	2.2	38
23	A direct surface modification of iron oxide nanoparticles with various poly(amino acid)s for use as magnetic resonance probes. Journal of Colloid and Interface Science, 2013, 391, 158-167.	9.4	33
24	Reversible Chromatic Response of Polydiacetylene Derivative Vesicles in D ₂ O Solvent. Langmuir, 2016, 32, 882-888.	3.5	33
25	Nickel oxide nanoparticle-based method for simultaneous harvesting and disruption of microalgal cells. Bioresource Technology, 2016, 218, 1290-1293.	9.6	32
26	Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 323-329.	4.7	31
27	Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids and Surfaces B: Biointerfaces, 2018, 161, 183-191.	5.0	31
28	Poly(amino acid)s micelle-mediated assembly of magnetite nanoparticles for ultra-sensitive long-term MR imaging of tumors. Chemical Communications, 2010, 46, 3559.	4.1	29
29	Size-controlled layered zinc hydroxide intercalated with dodecyl sulfate: effect of alcohol type on dodecyl sulfate template. CrystEngComm, 2010, 12, 3249.	2.6	28
30	Transport and trapping of photocharges in liquid crystals placed between photoconductive polymer layers. Applied Physics Letters, 2001, 79, 1933-1935.	3.3	27
31	Gold nanoparticles reinforce self-healing microgel multilayers. Colloid and Polymer Science, 2011, 289, 583-590.	2.1	27
32	Mixed Cationicâ^'Nonionic Surfactant Templating Approach for the Synthesis of Mesoporous Silica. Langmuir, 2002, 18, 6110-6115.	3.5	26
33	Cross-linked magnetic nanoparticles from poly(ethylene glycol) and dodecyl grafted poly(succinimide) as magnetic resonance probes. Chemical Communications, 2011, 47, 12518.	4.1	26
34	Preparation and characterization of N, S-codoped activated carbon-derived asphaltene used as electrode material for an electric double layer capacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 107-112.	4.7	26
35	Polymer-hybridized liposomes anchored with alkyl grafted poly(asparagine). Journal of Colloid and Interface Science, 2011, 364, 31-38.	9.4	25
36	Tumor-binding prodrug micelles of polymer–drug conjugates for anticancer therapy in HeLa cells. Journal of Materials Chemistry, 2012, 22, 9385.	6.7	25

#	Article	IF	CITATIONS
37	Simple and direct synthesis of ZnO decorated multi-walled carbon nanotube for supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 23-27.	4.7	25
38	Temperature-sensitive releases from liposomes containing hydrophobically modified poly(N-isopropylacrylamide). Korean Journal of Chemical Engineering, 1999, 16, 28-33.	2.7	24
39	The effect of dexamethasone/cell-penetrating peptide nanoparticles on gene delivery for inner ear therapy. International Journal of Nanomedicine, 2016, Volume 11, 6123-6134.	6.7	24
40	Sustainable fabrication of nitrogen activated carbon from chlorella vulgaris for energy storage devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 102-106.	4.7	24
41	Self-aggregates of hydrophobically modified poly(2-hydroxyethyl aspartamide) in aqueous solution. Colloid and Polymer Science, 2003, 281, 852-861.	2.1	23
42	Photo-dimerization of a chalcone-based side chain polymer for the alignment of ferroelectric liquid crystals. Liquid Crystals, 2004, 31, 639-647.	2.2	23
43	Asphaltene precipitation with partially oxidized asphaltene from water/heavy crude oil emulsion. Journal of Petroleum Science and Engineering, 2016, 146, 21-29.	4.2	23
44	Novel evaluation method for the water- in- oil (W/O) emulsion stability by Turbidity Ratio Measurements. Korean Journal of Chemical Engineering, 2002, 19, 425-430.	2.7	22
45	Intracellular delivery enhancement of poly(amino acid) drug carriers by oligoarginine conjugation. Journal of Biomedical Materials Research - Part A, 2008, 86A, 137-148.	4.0	21
46	Simultaneous cell disruption and lipid extraction in a microalgal biomass using a nonpolar tertiary amine. Bioresource Technology, 2017, 232, 142-145.	9.6	20
47	Partially Oxidized Asphaltene as a Bitumen Viscosity Reducer. Energy & Ener	5.1	20
48	Polymer-hybridized liposomes of poly(amino acid) derivatives as transepidermal carriers. Colloids and Surfaces B: Biointerfaces, 2013, 110, 333-338.	5.0	19
49	Sensitivity limitation of the sensor fabricated with polydiacetylene. Journal of Industrial and Engineering Chemistry, 2015, 23, 279-284.	5.8	19
50	Biodegradable poly(asparagine) grafted with poly(caprolactone) and the effect of substitution on self-aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264, 187-194.	4.7	17
51	Development of a drug delivery system for the inner ear using poly(amino acid)-based nanoparticles. Drug Delivery, 2015, 22, 367-374.	5.7	17
52	Electrochemical properties of multi-walled carbon nanotubes treated with nitric acid for a supercapacitor electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 664-669.	4.7	17
53	Chargeâ€conversional poly(amino acid)s derivatives as a drug delivery carrier in response to the tumor environment. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2027-2033.	4.0	16
54	Electrochemical properties and characterization of various ZnO structures using a precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512, 87-92.	4.7	16

#	Article	IF	CITATIONS
55	Magnetic Properties of Fe <tex>\$_3\$</tex> O <tex>\$_4\$</tex> Nanoparticles Encapsulated With Poly(D,L Lactide-Co-Glycolide). IEEE Transactions on Magnetics, 2004, 40, 3015-3017.	2.1	15
56	Size and morphology controllable core crossâ€linked selfâ€aggregates from poly(ethylene) Tj ETQq0 0 0 rgBT /u	Overlgck 1	.0 Т $_15$ 0 702 Тс
57	A facile patterning of silver nanowires using a magnetic printing method. Nanotechnology, 2015, 26, 345301.	2.6	15
58	Phase behavior and solubilization of 1-hexanol in the water-continuous phases containing surface-active compounds. Korean Journal of Chemical Engineering, 1987, 4, 53-59.	2.7	14
59	Hemolytic and Antifungal Activity of Liposome-Entrapped Amphotericin B Prepared by the Precipitation Method. Pharmaceutical Development and Technology, 1997, 2, 275-284.	2.4	14
60	Functionalized Magnetic PLGA Nanospheres for Targeting and Bioimaging of Breast Cancer. Journal of Nanoscience and Nanotechnology, 2018, 18, 1542-1547.	0.9	14
61	The monolayer behavior and transfer characteristics of phospholipids at the air/water interface. Korean Journal of Chemical Engineering, 1996, 13, 46-53.	2.7	13
62	Tunable phase transition behaviors of pH-sensitive polyaspartamides having various cationic pendant groups. Colloid and Polymer Science, 2009, 287, 919-926.	2.1	13
63	Chromatic response of polydiacetylene vesicle induced by the permeation of methotrexate. Soft Matter, 2015, 11, 5037-5043.	2.7	13
64	A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant. Bioresource Technology, 2017, 226, 94-98.	9.6	13
65	Mucoadhesive interaction of cysteine grafted poly(2-hydroxyethyl aspartamide) with pig mucin layer of surface plasmon resonance biosensor. Journal of Industrial and Engineering Chemistry, 2009, 15, 578-583.	5.8	12
66	Zigzag defect-free alignment of surface stabilized ferroelectric liquid crystal cells with a polyimide irradiated by polarized UV light. Liquid Crystals, 2001, 28, 1715-1721.	2.2	11
67	Anticancer therapeutic self-aggregates of sphingolipid metabolite-grafted poly(amino acid)-derivative and their enhanced intracellular delivery. Journal of Industrial and Engineering Chemistry, 2010, 16, 1011-1018.	5.8	11
68	CO2 absorption kinetics in a CO2-free and partially loaded aqueous ammonia solution. Chemical Engineering Journal, 2014, 250, 83-90.	12.7	11
69	Aggregation behaviors and their pH sensitivity of cholesterol-conjugated proteinoids composed of glutamic acid and aspartic acid matrix. Journal of Biomedical Materials Research Part B, 2003, 64A, 282-290.	3.1	10
70	The microfluidity and dissolution of hydrogenated PC liposome anchored with alkyl grafted poly(amino acid)s. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 170-178.	4.7	10
71	Micellar Aggregation and Structure of Dodecyl Heptaethoxylates (C12E7) with Different Oxyethylene Distributions in Aqueous Media. Langmuir, 2002, 18, 8749-8755.	3.5	9
72	Self-aggregates of oligoarginine-conjugated poly(amino acid) derivatives as a carrier for intracellular drug delivery. Biotechnology Letters, 2005, 27, 977-982.	2.2	9

#	Article	IF	Citations
73	Aqueous self-assembly of amphiphilic nanocrystallo-polymers and their surface-active properties. Soft Matter, 2008, 4, 349-356.	2.7	9
74	Blob calculation method for the liquid-liquid equilibria of polymer solutions. Fluid Phase Equilibria, 1989, 53, 331-338.	2.5	8
75	Production of High-Purity Nitrogen from Air by Pressure Swing Adsorption on Zeolite X. Separation Science and Technology, 1995, 30, 347-368.	2.5	8
76	Contrast ratio and switching of zigzag defect-free surface stabilized FLCD by photoinduced alignment. Liquid Crystals, 2002, 29, 583-587.	2.2	8
77	Kinetics of Reduction of Uranium(VI) to Uranium(IV) at Titanium Electrode in Nitric Acid and Hydrazine Media. Journal of Nuclear Science and Technology, 1994, 31, 329-334.	1.3	7
78	Rapid synthesis of mesoporous silica by an accelerated microwave radiation method. Korean Journal of Chemical Engineering, 2004, 21, 1224-1230.	2.7	7
79	Surface Properties of Rubbed Polyimide for Alignment of Liquid Crystal. Molecular Crystals and Liquid Crystals, 1996, 287, 229-237.	0.3	6
80	<i>In situ</i> Photopolymerization of Polymerizable Liquid Crystal at the Air-Water Interface. Molecular Crystals and Liquid Crystals, 1998, 316, 241-244.	0.3	6
81	Protective and retentive effects of liposomes on water-degradable hydrocortisone acetate in dermatological applications. Korean Journal of Chemical Engineering, 1999, 16, 56-63.	2.7	6
82	Surface modification of vesicles with methylol urea. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1235-1239.	1.9	6
83	Size and Morphology Control of Aggregates from Supramolecular Graft Copolymers Stabilized by lonic Interaction. Macromolecular Chemistry and Physics, 2010, 211, 2434-2442.	2.2	6
84	Controlled Selfâ€Assembly for Highâ€Resolution Magnetic Printing. Small, 2014, 10, 1081-1085.	10.0	6
85	Stability and transferability of monolayers of polyamic acid salts. Synthetic Metals, 1995, 71, 2097-2098.	3.9	5
86	Effectiveness of a new water-based oil spill dispersant comprised of an alkyl polyglycoside. Journal of Surfactants and Detergents, 1999, 2, 539-544.	2.1	5
87	Electrodialysis of Vanadium(III) and Iron(II) Ions from a Simulated Decontamination Solution. Separation Science and Technology, 1999, 34, 1963-1979.	2.5	5
88	Study of adsorption behaviors on a SiO2 surface using alkyl cationic modified starches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 449-458.	4.7	5
89	Decorated lattice model for closed-loop liquid-liquid equilibria and its applications to pyridine derivatives-water mixtures. Korean Journal of Chemical Engineering, 1986, 3, 99-105.	2.7	4
90	Formation of palladium precipitate by hydrazine in a simulated high level liquid waste. Journal of Radioanalytical and Nuclear Chemistry, 1996, 204, 265-274.	1.5	4

#	Article	IF	CITATIONS
91	Ternary liquid-liquid phase behavior by decorated-uniquac. Korean Journal of Chemical Engineering, 1996, 13, 439-447.	2.7	4
92	Swelling and deswelling transition of water-soluble poly(N-isopropylacrylamide) by a method of blob rescaling. Korean Journal of Chemical Engineering, 2002, 19, 803-807.	2.7	4
93	The effect of polydispersity on the static and dynamic behavior of dodecyl ethoxylates at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207, 161-167.	4.7	4
94	Birefringence measurement on the liquid crystal by phase modulation technique. Korean Journal of Chemical Engineering, 1990, 7, 18-21.	2.7	3
95	ADSORPTION ISOTHERMS AND HEATS OF IMMERSION IN THE ADSORPTION OF BINARY MIXTURES ON ACTIVATED CARBON. Chemical Engineering Communications, 1990, 88, 1-10.	2.6	3
96	Complexation of amphotericin B with egg phosphatidylcholine liposomes. Archives of Pharmacal Research, 1995, 18, 84-89.	6.3	3
97	Analysis of Equilibrium PSA Performance with an Analytical Solution. Adsorption, 1999, 5, 245-259.	3.0	3
98	Relationship between Pretilt Angle of Nematic Liquid Crystal and Surface Structure of Alignment Layer. Molecular Crystals and Liquid Crystals, 1999, 337, 515-518.	0.3	3
99	Multi-Domain Alignment Films of Polystyrene/Polyimide of Liquid Crystals. Molecular Crystals and Liquid Crystals, 1999, 331, 297-304.	0.3	3
100	Starch composites and their reduction of air permeation for self-extinguishable paper. Macromolecular Research, 2017, 25, 1085-1090.	2.4	3
101	The Mono- and Multi-Layer Behaviors of 2,4-HDDA Doped with Stearic Acid Including (i) in situ (i) Polymerization. Molecular Crystals and Liquid Crystals, 1993, 227, 21-27.	0.3	2
102	The Preparation and Transfer Characteristics of Polyimide Langmuir-Blodgett Film for Liquid Crystal Alignment. Molecular Crystals and Liquid Crystals, 1995, 267, 157-162.	0.3	2
103	Electro-Optical Properties of the Antiparallel Liquid Crystal Cell. Molecular Crystals and Liquid Crystals, 1995, 263, 437-444.	0.3	2
104	Liquid Crystal Alignment Film with Mixture of Polyimide and Side Chain LC by Langmuir-Blodgett Technique. Molecular Crystals and Liquid Crystals, 1997, 304, 247-252.	0.3	2
105	Electro-optical response of ferroelectric liquid crystal cells with photo-dimerization alignment layer. Optical Materials, 2003, 21, 651-656.	3.6	2
106	New Type of Extraction Solvent for Algal Oils: Fatty Acid Methyl Esters. ACS Sustainable Chemistry and Engineering, 2014, 2, 2653-2657.	6.7	2
107	Antisolvent Precipitation of Potassium Bicarbonate from KHCO ₃ + H ₂ O + Ethanol/2-Propanol Systems in the CO ₂ Capture Process. Industrial & Engineering Chemistry Research, 2015, 54, 8287-8294.	3.7	2
108	Sustainable delivery of a sex pheromone with an ester wax to disrupt Grapholita molesta mating. Macromolecular Research, 2017, 25, 374-380.	2.4	2

#	Article	IF	CITATIONS
109	Kinetics of Reduction of Uranium (VI) to Uranium (IV) at Titanium Electrode in Nitric Acid and Hydrazine Media Journal of Nuclear Science and Technology, 1994, 31, 329-334.	1.3	2
110	Efficacy Test of Mating Disruptors Against Peach Fruit Moth, Grapholita molesta, using Polypropylene Dispenser Containing Ester Wax. Korean Journal of Applied Entomology, 2015, , 369-374.	0.3	2
111	Spontaneous Noncentrosymmetric Alignment of Carbazole Polymers. Molecular Crystals and Liquid Crystals, 1998, 316, 83-86.	0.3	1
112	Langmuir Monolayer of Alkyl Polyglycoside in Concentrated NaCl Solution. Molecular Crystals and Liquid Crystals, 2000, 349, 239-242.	0.3	1
113	Optical retardation and FT-IR characteristics of rubbed polyimide langmuir-blodgett alignment layers of liquid crystals. Korean Journal of Chemical Engineering, 2002, 19, 474-479.	2.7	1
114	Dynamic Formation of Diffraction Grating in a Photorefractive Liquid Crystal Cell With Mesoporous \$hbox{TiO}_{2}\$ Layers. IEEE Nanotechnology Magazine, 2008, 7, 115-119.	2.0	1
115	Fast Responsive Nanoparticles of Hydrophobically Modified Poly(Amino Acid)s and Proteinoids. , 2004, ,		1
116	Photorefractive Effect in Nematic Liquid Crystal Cell with Sandwiched Structure. Materials Research Society Symposia Proceedings, 2001, 709, 1.	0.1	0
117	In situ photopolymerization of polymerizable liquid crystals with a mixture of poly(amic acid) alkylamine salt at the air–water interface. Thin Solid Films, 2001, 385, 142-151.	1.8	0
118	Fabrication of the Alignment Layer with Cavities by using Two Dimensional Template of Polystyrene Latex Array. Molecular Crystals and Liquid Crystals, 2001, 368, 573-580.	0.3	0
119	Photorefractive effect in nematic liquid crystals doped with nonlinear optical chromophores. , 0, , .		0
120	Monolayers of Poly($\hat{l}\pm,\hat{l}^2$ -aspartic acid) with Long Alkyl Chains and Miscibility with L- $\hat{l}\pm$ -Phosphatidylcholine at Air-Water Interface. Molecular Crystals and Liquid Crystals, 2001, 371, 29-32.	0.3	0
121	Enhanced diffraction efficiency in a photorefractive liquid crystal cell with poly(9-vinylcarbazole)-infiltrated mesoporous TiO <inf>2</inf> layers., 2006,,.		0
122	A novel immobilization technique for surface plasmon resonance sensing. , 2006, , .		0
123	Dynamic formation of diffraction grating in a photorefractive liqud crystal cell with mesoporous TiO <inf>2</inf> layers. , 2006, , .		0
124	Hard Surface-adhesive Properties of TiO2 Nanoparticles-encapsulated Microparticles Prepared by Spray Drying and Surface Coating Method. Fibers and Polymers, 2018, 19, 1303-1308.	2.1	0