Meena S Madhur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2589739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tissue Sodium in Patients With Early Stage Hypertension: A Randomized Controlled Trial. Journal of the American Heart Association, 2022, 11, e022723.	1.6	7
2	ROCK2 Specific Inhibition Attenuates DOCA Saltâ€Induced Cardiac Fibrosis and Renal T Cell Infiltration. FASEB Journal, 2022, 36, .	0.2	0
3	Single Cell Sequencing of Myeloid Cells in Human Hypertension. FASEB Journal, 2022, 36, .	0.2	0
4	Class switching and high-affinity immunoglobulin G production by B cells is dispensable for the development of hypertension in mice. Cardiovascular Research, 2021, 117, 1217-1228.	1.8	8
5	Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target. Current Hypertension Reports, 2021, 23, 13.	1.5	26
6	Hypertension. Circulation Research, 2021, 128, 908-933.	2.0	95
7	Anticytomegalovirus CD4 + T Cells Are Associated With Subclinical Atherosclerosis in Persons With HIV. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1459-1473.	1.1	7
8	Predicting susceptibility to SARS oVâ€2 infection based on structural differences in ACE2 across species. FASEB Journal, 2020, 34, 15946-15960.	0.2	44
9	Coordinate adaptations of skeletal muscle and kidney to maintain extracellular [K ⁺] during K ⁺ -deficient diet. American Journal of Physiology - Cell Physiology, 2020, 319, C757-C770.	2.1	14
10	Highly Reactive Isolevuglandins Promote Atrial Fibrillation Caused by Hypertension. JACC Basic To Translational Science, 2020, 5, 602-615.	1.9	17
11	From Rags to Riches. Hypertension, 2020, 75, 930-934.	1.3	13
12	COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovascular Research, 2020, 116, 1666-1687.	1.8	1,074
13	Macrophages Promote Aortic Valve Cell Calcification and Alter STAT3 Splicing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e153-e165.	1.1	24
14	Human monocyte transcriptional profiling identifies ILâ€18 receptor accessory protein and lactoferrin as novel immune targets in hypertension. British Journal of Pharmacology, 2019, 176, 2015-2027.	2.7	22
15	Recent Cardiovascular Research highlights from the Americas. Cardiovascular Research, 2019, 115, e22-e23.	1.8	0
16	Adaptive immune cells in calcific aortic valve disease. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H141-H155.	1.5	47
17	Evidence for a Causal Role of the <i>SH2B3</i> -β ₂ M Axis in Blood Pressure Regulation. Hypertension, 2019, 73, 497-503.	1.3	11
18	Critical role of IL-21 and T follicular helper cells in hypertension and vascular dysfunction. JCI Insight, 2019, 4, .	2.3	20

MEENA S MADHUR

#	Article	IF	CITATIONS
19	The immunology of hypertension. Journal of Experimental Medicine, 2018, 215, 21-33.	4.2	286
20	LNK deficiency promotes acute aortic dissection and rupture. JCI Insight, 2018, 3, .	2.3	15
21	Inflammatory cytokines regulate renal sodium transporters: how, where, and why?. American Journal of Physiology - Renal Physiology, 2017, 313, F141-F144.	1.3	38
22	Status of Early-Career Academic Cardiology. Journal of the American College of Cardiology, 2017, 70, 2290-2303.	1.2	27
23	Intracellular Staining and Flow Cytometry to Identify Lymphocyte Subsets within Murine Aorta, Kidney and Lymph Nodes in a Model of Hypertension. Journal of Visualized Experiments, 2017, , .	0.2	5
24	A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight, 2017, 2, .	2.3	86
25	Linking inflammation and hypertension via LNK/SH2B3. Current Opinion in Nephrology and Hypertension, 2016, 25, 87-93.	1.0	33
26	Inhibition of Interleukin-17A, But Not Interleukin-17F, Signaling LowersÂBlood Pressure, and Reduces End-Organ Inflammation in Angiotensin II–Induced Hypertension. JACC Basic To Translational Science, 2016, 1, 606-616.	1.9	84
27	Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II–Induced Hypertension. Hypertension, 2016, 68, 167-174.	1.3	147
28	Activation of Human T Cells in Hypertension. Hypertension, 2016, 68, 123-132.	1.3	191
29	Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice. BMC Nephrology, 2016, 17, 24.	0.8	33
30	CD70 Exacerbates Blood Pressure Elevation and Renal Damage in Response to Repeated Hypertensive Stimuli. Circulation Research, 2016, 118, 1233-1243.	2.0	128
31	Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension. Hypertension, 2016, 67, 461-468.	1.3	65
32	Renal Transporter Activation During Angiotensin-II Hypertension is Blunted in Interferon-γ ^{â^'/â^'} and Interleukin-17A ^{â^'/â^'} Mice. Hypertension, 2015, 65, 569-576.	1.3	166
33	Inflammation, Immunity, and Hypertensive End-Organ Damage. Circulation Research, 2015, 116, 1022-1033.	2.0	554
34	Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Molecular Systems Biology, 2015, 11, 799.	3.2	102
35	National Institutes of Health Career Development Awards for CardiovascularÂPhysician–Scientists. Journal of the American College of Cardiology, 2015, 66, 1816-1827	1.2	12
36	Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. Journal of Clinical Investigation, 2015, 125, 1189-1202.	3.9	128

MEENA S MADHUR

#	Article	IF	CITATIONS
37	Immune activation caused by vascular oxidation promotes fibrosis and hypertension. Journal of Clinical Investigation, 2015, 126, 50-67.	3.9	170
38	Inflammation and Mechanical Stretch Promote Aortic Stiffening in Hypertension Through Activation of p38 Mitogen-Activated Protein Kinase. Circulation Research, 2014, 114, 616-625.	2.0	200
39	Oligoclonal CD8 ⁺ T Cells Play a Critical Role in the Development of Hypertension. Hypertension, 2014, 64, 1108-1115.	1.3	185
40	DC isoketal-modified proteins activate T cells and promote hypertension. Journal of Clinical Investigation, 2014, 124, 4642-4656.	3.9	400
41	Senescent T Cells and Hypertension. Hypertension, 2013, 62, 13-15.	1.3	17
42	CXCL16. Hypertension, 2013, 62, 1008-1010.	1.3	13
43	Lymphocyteâ€specific adaptor protein, LNK, inhibits angiotensin IIâ€induced hypertension and inflammation. FASEB Journal, 2013, 27, 708.15.	0.2	Ο
44	Synapses, Signals, CDs, and Cytokines. Circulation Research, 2012, 111, 1113-1116.	2.0	9
45	Inflammation, Immunity, and Hypertension. Hypertension, 2011, 57, 132-140.	1.3	718
46	Role of Interleukin 17 in Inflammation, Atherosclerosis, and Vascular Function in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1565-1572.	1.1	182
47	Interleukin 17 Promotes Angiotensin Il–Induced Hypertension and Vascular Dysfunction. Hypertension, 2010, 55, 500-507.	1.3	662
48	Role of the adaptive immune system in hypertension. Current Opinion in Pharmacology, 2010, 10, 203-207.	1.7	137
49	Interleukin 17 promotes atherosclerosis and protects against aneurysmal rupture. FASEB Journal, 2010, 24, 589.8.	0.2	0