Meena S Madhur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2589739/publications.pdf

Version: 2024-02-01

49 papers

6,231 citations

218592 26 h-index 243529 44 g-index

50 all docs

50 docs citations

50 times ranked

9021 citing authors

#	Article	IF	CITATIONS
1	COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovascular Research, 2020, 116, 1666-1687.	1.8	1,074
2	Inflammation, Immunity, and Hypertension. Hypertension, 2011, 57, 132-140.	1.3	718
3	Interleukin 17 Promotes Angiotensin II–Induced Hypertension and Vascular Dysfunction. Hypertension, 2010, 55, 500-507.	1.3	662
4	Inflammation, Immunity, and Hypertensive End-Organ Damage. Circulation Research, 2015, 116, 1022-1033.	2.0	554
5	DC isoketal-modified proteins activate T cells and promote hypertension. Journal of Clinical Investigation, 2014, 124, 4642-4656.	3.9	400
6	The immunology of hypertension. Journal of Experimental Medicine, 2018, 215, 21-33.	4.2	286
7	Inflammation and Mechanical Stretch Promote Aortic Stiffening in Hypertension Through Activation of p38 Mitogen-Activated Protein Kinase. Circulation Research, 2014, 114, 616-625.	2.0	200
8	Activation of Human T Cells in Hypertension. Hypertension, 2016, 68, 123-132.	1.3	191
9	Oligoclonal CD8 ⁺ T Cells Play a Critical Role in the Development of Hypertension. Hypertension, 2014, 64, 1108-1115.	1.3	185
10	Role of Interleukin 17 in Inflammation, Atherosclerosis, and Vascular Function in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1565-1572.	1.1	182
11	Immune activation caused by vascular oxidation promotes fibrosis and hypertension. Journal of Clinical Investigation, 2015, 126, 50-67.	3.9	170
12	Renal Transporter Activation During Angiotensin-II Hypertension is Blunted in Interferon-Î ³ ^{â^'/â^'} and Interleukin-17A ^{â^'/â^'} Mice. Hypertension, 2015, 65, 569-576.	1.3	166
13	Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II–Induced Hypertension. Hypertension, 2016, 68, 167-174.	1.3	147
14	Role of the adaptive immune system in hypertension. Current Opinion in Pharmacology, 2010, 10, 203-207.	1.7	137
15	CD70 Exacerbates Blood Pressure Elevation and Renal Damage in Response to Repeated Hypertensive Stimuli. Circulation Research, 2016, 118, 1233-1243.	2.0	128
16	Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. Journal of Clinical Investigation, 2015, 125, 1189-1202.	3.9	128
17	Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Molecular Systems Biology, 2015, 11, 799.	3.2	102
18	Hypertension. Circulation Research, 2021, 128, 908-933.	2.0	95

#	Article	IF	Citations
19	A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight, 2017, 2, .	2.3	86
20	Inhibition of Interleukin-17A, But Not Interleukin-17F, Signaling LowersÂBlood Pressure, and Reduces End-Organ Inflammation in Angiotensin Il–Induced Hypertension. JACC Basic To Translational Science, 2016, 1, 606-616.	1.9	84
21	Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension. Hypertension, 2016, 67, 461-468.	1.3	65
22	Adaptive immune cells in calcific aortic valve disease. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H141-H155.	1.5	47
23	Predicting susceptibility to SARSâ€CoVâ€2 infection based on structural differences in ACE2 across species. FASEB Journal, 2020, 34, 15946-15960.	0.2	44
24	Inflammatory cytokines regulate renal sodium transporters: how, where, and why?. American Journal of Physiology - Renal Physiology, 2017, 313, F141-F144.	1.3	38
25	Linking inflammation and hypertension via LNK/SH2B3. Current Opinion in Nephrology and Hypertension, 2016, 25, 87-93.	1.0	33
26	Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice. BMC Nephrology, 2016, 17, 24.	0.8	33
27	Status of Early-Career Academic Cardiology. Journal of the American College of Cardiology, 2017, 70, 2290-2303.	1.2	27
28	Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target. Current Hypertension Reports, 2021, 23, 13.	1.5	26
29	Macrophages Promote Aortic Valve Cell Calcification and Alter STAT3 Splicing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e153-e165.	1.1	24
30	Human monocyte transcriptional profiling identifies ILâ \in 18 receptor accessory protein and lactoferrin as novel immune targets in hypertension. British Journal of Pharmacology, 2019, 176, 2015-2027.	2.7	22
31	Critical role of IL-21 and T follicular helper cells in hypertension and vascular dysfunction. JCI Insight, 2019, 4, .	2.3	20
32	Senescent T Cells and Hypertension. Hypertension, 2013, 62, 13-15.	1.3	17
33	Highly Reactive Isolevuglandins Promote Atrial Fibrillation Caused by Hypertension. JACC Basic To Translational Science, 2020, 5, 602-615.	1.9	17
34	LNK deficiency promotes acute aortic dissection and rupture. JCI Insight, 2018, 3, .	2.3	15
35	Coordinate adaptations of skeletal muscle and kidney to maintain extracellular [K ⁺] during K ⁺ -deficient diet. American Journal of Physiology - Cell Physiology, 2020, 319, C757-C770.	2.1	14
36	CXCL16. Hypertension, 2013, 62, 1008-1010.	1.3	13

3

#	Article	IF	Citations
37	From Rags to Riches. Hypertension, 2020, 75, 930-934.	1.3	13
38	National Institutes of Health Career Development Awards for CardiovascularÂPhysician–Scientists. Journal of the American College of Cardiology, 2015, 66, 1816-1827.	1.2	12
39	Evidence for a Causal Role of the $\langle i \rangle SH2B3 \langle i \rangle - \hat{l}^2 \langle sub \rangle 2 \langle sub \rangle M$ Axis in Blood Pressure Regulation. Hypertension, 2019, 73, 497-503.	1.3	11
40	Synapses, Signals, CDs, and Cytokines. Circulation Research, 2012, 111, 1113-1116.	2.0	9
41	Class switching and high-affinity immunoglobulin G production by B cells is dispensable for the development of hypertension in mice. Cardiovascular Research, 2021, 117, 1217-1228.	1.8	8
42	Anticytomegalovirus CD4 + T Cells Are Associated With Subclinical Atherosclerosis in Persons With HIV. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1459-1473.	1.1	7
43	Tissue Sodium in Patients With Early Stage Hypertension: A Randomized Controlled Trial. Journal of the American Heart Association, 2022, 11 , e022723.	1.6	7
44	Intracellular Staining and Flow Cytometry to Identify Lymphocyte Subsets within Murine Aorta, Kidney and Lymph Nodes in a Model of Hypertension. Journal of Visualized Experiments, 2017, , .	0.2	5
45	Recent Cardiovascular Research highlights from the Americas. Cardiovascular Research, 2019, 115, e22-e23.	1.8	0
46	Interleukin 17 promotes atherosclerosis and protects against aneurysmal rupture. FASEB Journal, 2010, 24, 589.8.	0.2	0
47	Lymphocyteâ€specific adaptor protein, LNK, inhibits angiotensin Ilâ€induced hypertension and inflammation. FASEB Journal, 2013, 27, 708.15.	0.2	0
48	ROCK2 Specific Inhibition Attenuates DOCA Saltâ€Induced Cardiac Fibrosis and Renal T Cell Infiltration. FASEB Journal, 2022, 36, .	0.2	0
49	Single Cell Sequencing of Myeloid Cells in Human Hypertension. FASEB Journal, 2022, 36, .	0.2	O