
Cristina LÃ³pez-Hidalgo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2589476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleus and chloroplast: A necessary understanding to overcome heat stress in <i>Pinus radiata</i> . Plant, Cell and Environment, 2022, 45, 446-458.	5.7	7
2	Untargeted MS-Based Metabolomics Analysis of the Responses to Drought Stress in Quercus ilex L. Leaf Seedlings and the Identification of Putative Compounds Related to Tolerance. Forests, 2022, 13, 551.	2.1	13
3	Non-Invasive Identification of Sex in Cultured Bovine Embryos by UHPLC-MS/MS Metabolomics. Metabolomics, 2022, 18, .	3.0	1
4	Phytochemical composition and variability in Quercus ilex acorn morphotypes as determined by NIRS and MS-based approaches. Food Chemistry, 2021, 338, 127803.	8.2	25
5	The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and <scp>MDA</scp> from a small amount of sample. Plant, Cell and Environment, 2021, 44, 1977-1986.	5.7	23
6	The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites, 2021, 11, 484.	2.9	6
7	Changes in the transcript and protein profiles of Quercus ilex seedlings in response to drought stress. Journal of Proteomics, 2021, 243, 104263.	2.4	13
8	Endemic Juniperus gracilior varieties of the Hispaniola island, tree taxa of environmental and economic relevance and a valuable phytochemical source. Bosque, 2021, 42, 7-22.	0.3	0
9	Responses and Differences in Tolerance to Water Shortage under Climatic Dryness Conditions in Seedlings from Quercus spp. and Andalusian Q. ilex Populations. Forests, 2020, 11, 707.	2.1	19
10	A Pipeline for Metabolic Pathway Reconstruction in Plant Orphan Species. Methods in Molecular Biology, 2020, 2139, 367-380.	0.9	0
11	Recent Advances in MS-Based Plant Proteomics: Proteomics Data Validation Through Integration with Other Classic and -Omics Approaches. Progress in Botany Fortschritte Der Botanik, 2019, , 77-101.	0.3	6
12	Proteomics, Holm Oak (Quercus ilex L.) and Other Recalcitrant and Orphan Forest Tree Species: How do They See Each Other?. International Journal of Molecular Sciences, 2019, 20, 692.	4.1	20
13	A Multi-Omics Analysis Pipeline for the Metabolic Pathway Reconstruction in the Orphan Species Quercus ilex. Frontiers in Plant Science, 2018, 9, 935.	3.6	37
14	Holm oak proteomic response to water limitation at seedling establishment stage reveals specific changes in different plant parts as well as interaction between roots and cotyledons. Plant Science, 2018, 276, 1-13.	3.6	16
15	Proteomics Analysis of Plant Tissues Based on Two-Dimensional Gel Electrophoresis. , 2018, , 309-322.		1