List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2589393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): a multicentre, randomised controlled trial. Lancet, The, 2018, 391, 1367-1377.	6.3	358
2	Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, S1-S7.	0.6	263
3	System Accuracy Evaluation of 43 Blood Glucose Monitoring Systems for Self-Monitoring of Blood Glucose according to DIN EN ISO 15197. Journal of Diabetes Science and Technology, 2012, 6, 1060-1075.	1.3	209
4	System Accuracy Evaluation of 27 Blood Glucose Monitoring Systems According to DIN EN ISO 15197. Diabetes Technology and Therapeutics, 2010, 12, 221-231.	2.4	160
5	Continuous Glucose Profiles in Healthy Subjects under Everyday Life Conditions and after Different Meals. Journal of Diabetes Science and Technology, 2007, 1, 695-703.	1.3	122
6	Time Delay of CGM Sensors. Journal of Diabetes Science and Technology, 2015, 9, 1006-1015.	1.3	101
7	CGM Versus FGM; or, Continuous Glucose Monitoring Is Not Flash Glucose Monitoring. Journal of Diabetes Science and Technology, 2015, 9, 947-950.	1.3	95
8	Lot-to-Lot Variability of Test Strips and Accuracy Assessment of Systems for Self-Monitoring of Blood Glucose according to ISO 15197. Journal of Diabetes Science and Technology, 2012, 6, 1076-1086.	1.3	82
9	Significance and Reliability of MARD for the Accuracy of CGM Systems. Journal of Diabetes Science and Technology, 2017, 11, 59-67.	1.3	80
10	Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 406-410.	0.6	80
11	Measures of Accuracy for Continuous Glucose Monitoring and Blood Glucose Monitoring Devices. Journal of Diabetes Science and Technology, 2019, 13, 575-583.	1.3	80
12	Continuous Glucose Monitors and Automated Insulin Dosing Systems in the Hospital Consensus Guideline. Journal of Diabetes Science and Technology, 2020, 14, 1035-1064.	1.3	77
13	Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space. Journal of Diabetes Science and Technology, 2020, 14, 135-150.	1.3	72
14	Interferences and Limitations in Blood Glucose Self-Testing. Journal of Diabetes Science and Technology, 2016, 10, 1161-1168.	1.3	69
15	A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. Journal of Diabetes Science and Technology, 2023, 17, 1226-1242.	1.3	69
16	Rate-of-Change Dependence of the Performance of Two CGM Systems During Induced Glucose Swings. Journal of Diabetes Science and Technology, 2015, 9, 801-807.	1.3	68
17	Continuous Glucose Monitoring: Evidence and Consensus Statement for Clinical Use. Journal of Diabetes Science and Technology, 2013, 7, 500-519.	1.3	67
18	Evaluation of 12 Blood Glucose Monitoring Systems for Self-Testing: System Accuracy and Measurement Reproducibility. Diabetes Technology and Therapeutics, 2014, 16, 113-122.	2.4	67

#	Article	IF	CITATIONS
19	Performance Evaluation of Three Continuous Glucose Monitoring Systems: Comparison of Six Sensors Per Subject in Parallel. Journal of Diabetes Science and Technology, 2013, 7, 842-853.	1.3	62
20	Continuous glucose monitoring in people with diabetes: the randomized controlled Glucose Level Awareness in Diabetes Study (<scp>GLADIS</scp>). Diabetic Medicine, 2015, 32, 609-617.	1.2	55
21	Analytical Performance Requirements for Systems for Self-Monitoring of Blood Glucose With Focus on System Accuracy. Journal of Diabetes Science and Technology, 2015, 9, 885-894.	1.3	51
22	Evaluation of the Performance of a Novel System for Continuous Glucose Monitoring. Journal of Diabetes Science and Technology, 2013, 7, 815-823.	1.3	49
23	Performance of Blood Glucose Meters in the Low-Glucose Range: Current Evaluations Indicate That It Is Not Sufficient From a Clinical Point of View. Diabetes Care, 2015, 38, e139-e140. Measurement Performance of Two Continuous Tissue Glucose Monitoring Systems Intended for	4.3	49
24	Replacement of Blood Glucose MonitoringParts of the data have previously been presented at the 77th Scientific Sessions of the American Diabetes Association in San Diego, CA; June 9–13, 2017 and at the 17th Annual Diabetes Technology Meeting in Bethesda, MD, November 2–4, 2017.Trial number: DRKS00011920; registered at the Deutsches Register Klinischer Studien (German clinical trials) Tj ETQq0 0 0 rgE	2.4 3T /Overlo	47 ck 10 Tf 50 52
25	System Accuracy Evaluation of Different Blood Glucose Monitoring Systems Following ISO 15197:2013 by Using Two Different Comparison Methods. Diabetes Technology and Therapeutics, 2015, 17, 635-648.	2.4	40
26	Clinical Performance of Three Bolus Calculators in Subjects with Type 1 Diabetes Mellitus: A Head-to-Head-to-Head Comparison. Diabetes Technology and Therapeutics, 2010, 12, 955-961.	2.4	36
27	Performance Comparison of CGM Systems. Journal of Diabetes Science and Technology, 2015, 9, 1030-1040.	1.3	35
28	Impact of CGM on the Management of Hypoglycemia Problems: Overview and Secondary Analysis of the HypoDE Study. Journal of Diabetes Science and Technology, 2019, 13, 636-644.	1.3	35
29	Standardization process of continuous glucose monitoring: Traceability and performance. Clinica Chimica Acta, 2021, 515, 5-12.	0.5	34
30	Basics and use of continuous glucose monitoring (CGM) in diabetes therapy. Journal of Laboratory Medicine, 2020, 44, 71-79.	1.1	33
31	Limits to the Evaluation of the Accuracy of Continuous Glucose Monitoring Systems by Clinical Trials. Biosensors, 2018, 8, 50.	2.3	32
32	Documentation of Skin-Related Issues Associated with Continuous Glucose Monitoring Use in the Scientific Literature. Diabetes Technology and Therapeutics, 2019, 21, 538-545.	2.4	32
33	Performance Evaluation of a Continuous Glucose Monitoring System under Conditions Similar to Daily Life. Journal of Diabetes Science and Technology, 2013, 7, 833-841.	1.3	31
34	SPECTRUM. Journal of Diabetes Science and Technology, 2017, 11, 284-289.	1.3	31
35	Quality of HbA1c Measurement in the Practice. Journal of Diabetes Science and Technology, 2015, 9, 687-695.	1.3	30
36	System Accuracy Evaluation of Four Systems for Self-Monitoring of Blood Glucose Following ISO 15197 Using a Glucose Oxidase and a Hexokinase-Based Comparison Method. Journal of Diabetes Science and Technology, 2015, 9, 1041-1050.	1.3	30

#	Article	IF	CITATIONS
37	Recent advances in continuous glucose monitoring. Experimental and Clinical Endocrinology and Diabetes, 2001, 109, S347-S357.	0.6	29
38	Accuracy Evaluation of Four Blood Glucose Monitoring Systems in Unaltered Blood Samples in the Low Glycemic Range and Blood Samples in the Concentration Range Defined by ISO 15197. Diabetes Technology and Therapeutics, 2015, 17, 625-634.	2.4	28
39	ISO 15197: 2013 Evaluation of a Blood Glucose Monitoring System's Measurement Accuracy. Journal of Diabetes Science and Technology, 2017, 11, 1275-1276.	1.3	28
40	System accuracy evaluation of 18 CE-marked current-generation blood glucose monitoring systems based on EN ISO 15197:2015. BMJ Open Diabetes Research and Care, 2020, 8, e001067.	1.2	28
41	System accuracy evaluation of systems for point-of-care testing of blood glucose: a comparison of a patient-use system with six professional-use systems. Clinical Chemistry and Laboratory Medicine, 2014, 52, 1079-86.	1.4	25
42	Patch Pumps: Are They All the Same?. Journal of Diabetes Science and Technology, 2019, 13, 34-40.	1.3	25
43	Accuracy of Bolus and Basal Rate Delivery of Different Insulin Pump Systems. Diabetes Technology and Therapeutics, 2019, 21, 201-208.	2.4	25
44	Insulin Pump Therapy for Patients With Type 2 Diabetes Mellitus: Evidence, Current Barriers, and New Technologies. Journal of Diabetes Science and Technology, 2021, 15, 193229682092810.	1.3	25
45	System Accuracy of Blood Glucose Monitoring Systems: Impact of Use by Patients and Ambient Conditions. Diabetes Technology and Therapeutics, 2013, 15, 889-896.	2.4	24
46	Establishing Methods to Determine Clinically Relevant Bolus and Basal Rate Delivery Accuracy of Insulin Pumps. Journal of Diabetes Science and Technology, 2019, 13, 60-67.	1.3	24
47	Influence of Partial Pressure of Oxygen in Blood Samples on Measurement Performance in Glucose-Oxidase-Based Systems for Self-Monitoring of Blood Glucose. Journal of Diabetes Science and Technology, 2013, 7, 1513-1521.	1.3	23
48	Insulin Pump Occlusions: For Patients Who Have Been Around the (Infusion) Block. Journal of Diabetes Science and Technology, 2017, 11, 451-454.	1.3	23
49	Partial Pressure of Oxygen in Capillary Blood Samples from the Fingertip. Journal of Diabetes Science and Technology, 2013, 7, 1648-1649.	1.3	22
50	Glucose monitoring by microdialysis: performance in a multicentre study. Diabetic Medicine, 2009, 26, 714-721.	1.2	21
51	Performance and Usability of Three Systems for Continuous Glucose Monitoring in Direct Comparison. Journal of Diabetes Science and Technology, 2019, 13, 890-898.	1.3	21
52	Proof of Concept for a New Raman-Based Prototype for Noninvasive Glucose Monitoring. Journal of Diabetes Science and Technology, 2021, 15, 11-18.	1.3	21
53	Accuracy in Blood Glucose Measurement: What Will a Tightening of Requirements Yield?. Journal of Diabetes Science and Technology, 2012, 6, 435-443.	1.3	19
54	Evaluation of the SPECTRUM training programme for realâ€time continuous glucose monitoring: A realâ€world multicentre prospective study in 120 adults with type 1 diabetes. Diabetic Medicine, 2021, 38, e14467.	1.2	19

#	Article	IF	CITATIONS
55	Usability of Medical Devices for Patients With Diabetes Who Are Visually Impaired or Blind. Journal of Diabetes Science and Technology, 2016, 10, 1382-1387.	1.3	18
56	Evaluation of Accuracy of Six Blood Glucose Monitoring Systems and Modeling of Possibly Related Insulin Dosing Errors. Diabetes Technology and Therapeutics, 2017, 19, 580-588.	2.4	18
57	Continuous Glucose Monitoring in People With Type 1 Diabetes on Multiple-Dose Injection Therapy: The Relationship Between Glycemic Control and Hypoglycemia. Diabetes Care, 2020, 43, 53-58.	4.3	18
58	Heterogeneity of Access to Diabetes Technology Depending on Area Deprivation and Demographics Between 2016 and 2019 in Germany. Journal of Diabetes Science and Technology, 2021, 15, 1059-1068.	1.3	18
59	Self-measurement of Blood Glucose and Continuous Glucose Monitoring – Is There Only One Future?. European Endocrinology, 2018, 14, 24.	0.8	18
60	A Prospective Study of Insulin Infusion Set Use for up to 7 Days: Early Replacement Reasons and Impact on Glycemic Control. Diabetes Technology and Therapeutics, 2020, 22, 734-741.	2.4	17
61	Increasing Local Blood Flow by Warming the Application Site: Beneficial Effects on Postprandial Glycemic Excursions. Journal of Diabetes Science and Technology, 2012, 6, 780-785.	1.3	16
62	Effect of Infusion Rate and Indwelling Time on Tissue Resistance Pressure in Small-Volume Subcutaneous Infusion like in Continuous Subcutaneous Insulin Infusion. Diabetes Technology and Therapeutics, 2013, 15, 289-294.	2.4	16
63	Assessing the Analytical Performance of Systems for Self-Monitoring of Blood Glucose: Concepts of Performance Evaluation and Definition of Metrological Key Terms. Journal of Diabetes Science and Technology, 2013, 7, 1585-1594.	1.3	16
64	Accuracy Evaluation of Four Blood Glucose Monitoring Systems in the Hands of Intended Users and Trained Personnel Based on ISO 15197 Requirements. Diabetes Technology and Therapeutics, 2017, 19, 246-254.	2.4	16
65	Accuracy assessment of bolus and basal rate delivery of different insulin pump systems used in insulin pump therapy of children and adolescents. Pediatric Diabetes, 2020, 21, 649-656.	1.2	16
66	Clinical Performance of a Device That Applies Local Heat to the Insulin Infusion Site: A Crossover Study. Journal of Diabetes Science and Technology, 2012, 6, 320-327.	1.3	15
67	Impact of Partial Pressure of Oxygen in Blood Samples on the Performance of Systems for Self-Monitoring of Blood Glucose. Diabetes Technology and Therapeutics, 2014, 16, 156-165.	2.4	15
68	Higher HbA1c Measurement Quality Standards are Needed for Follow-Up and Diagnosis: Experience and Analyses from Germany. Hormone and Metabolic Research, 2018, 50, 728-734.	0.7	14
69	The Effects and Effect Sizes of Real-Time Continuous Glucose Monitoring on Patient-Reported Outcomes: A Secondary Analysis of the HypoDE Study. Diabetes Technology and Therapeutics, 2019, 21, 86-93.	2.4	14
70	Time in Specific Glucose Ranges, Glucose Management Indicator, and Glycemic Variability: Impact of Continuous Glucose Monitoring (CGM) System Model and Sensor on CGM Metrics. Journal of Diabetes Science and Technology, 2021, 15, 1104-1110.	1.3	14
71	Blood Glucose Monitoring Data Should Be Reported in Detail When Studies About Efficacy of Continuous Glucose Monitoring Systems Are Published. Journal of Diabetes Science and Technology, 2018, 12, 1061-1063.	1.3	13
72	Critical Reappraisal of the Time-in-Range: Alternative or Useful Addition to Glycated Hemoglobin?. Journal of Diabetes Science and Technology, 2020, 14, 922-927.	1.3	13

#	Article	IF	CITATIONS
73	Do the New FDA Guidance Documents Help Improving Performance of Blood Glucose Monitoring Systems Compared With ISO 15197?. Journal of Diabetes Science and Technology, 2017, 11, 1240-1246.	1.3	12
74	Randomized Cross-Over Study Comparing Two Infusion Sets for CSII in Daily Life. Journal of Diabetes Science and Technology, 2017, 11, 253-259.	1.3	12
75	Flash Glucose Monitoring: Differences Between Intermittently Scanned and Continuously Stored Data. Journal of Diabetes Science and Technology, 2018, 12, 397-400.	1.3	12
76	Comparative Accuracy Analysis of a Real-time and an Intermittent-Scanning Continuous Glucose Monitoring System. Journal of Diabetes Science and Technology, 2021, 15, 287-293.	1.3	12
77	Variation of Mean Absolute Relative Differences of Continuous Glucose Monitoring Systems Throughout the Day. Journal of Diabetes Science and Technology, 2022, 16, 649-658.	1.3	12
78	Performance of intermittently scanned continuous glucose monitoring systems in people with type 1 diabetes: A pooled analysis. Diabetes, Obesity and Metabolism, 2022, 24, 522-529.	2.2	12
79	Accuracy Assessment of Two Novel Systems for Self-Monitoring of Blood Glucose Following ISO 15197:2013. Journal of Diabetes Science and Technology, 2014, 8, 906-908.	1.3	11
80	Boluses in Insulin Therapy. Journal of Diabetes Science and Technology, 2017, 11, 165-171.	1.3	11
81	Evaluation of Four Blood Glucose Monitoring Systems for Self-Testing with Built-in Insulin Dose Advisor Based on ISO 15197:2013: System Accuracy and Hematocrit Influence. Diabetes Technology and Therapeutics, 2018, 20, 303-313.	2.4	11
82	Reporting Insulin Pump Accuracy: Trumpet Curves According to IEC 60601-2-24 and Beyond. Journal of Diabetes Science and Technology, 2019, 13, 592-596.	1.3	11
83	Choice of Continuous Glucose Monitoring Systems May Affect Metrics: Clinically Relevant Differences in Times in Ranges. Experimental and Clinical Endocrinology and Diabetes, 2022, 130, 343-350.	0.6	11
84	Considerations for an Institution for Evaluation of Diabetes Technology Devices to Improve Their Quality in the European Union. Journal of Diabetes Science and Technology, 2013, 7, 542-547.	1.3	10
85	Short-term prediction of blood glucose concentration using interval probabilistic models. , 2014, , .		10
86	Improved Glycemic Control in a Patient Group Performing 7-Point Profile Self-Monitoring of Blood Glucose and Intensive Data Documentation: An Open-Label, Multicenter, Observational Study. Diabetes Therapy, 2017, 8, 1079-1085.	1.2	10
87	User Performance Evaluation of Four Blood Glucose Monitoring Systems Applying ISO 15197:2013 Accuracy Criteria and Calculation of Insulin Dosing Errors. Diabetes Therapy, 2018, 9, 683-697.	1.2	10
88	Prediction Quality of Glucose Trend Indicators in Two Continuous Tissue Glucose Monitoring SystemsParts of these data were previously presented at the 53rd Annual Meeting of the European Association for the Study of Diabetes, September 11–15, 2017, Lisbon, Portugal Diabetes Technology and Therapeutics, 2018, 20, 550-556	2.4	10
89	Advanced carbohydrate counting: An engineering perspective. Annual Reviews in Control, 2019, 48, 401-422.	4.4	10
90	Skin Reaction Report Form: Development and Design of a Standardized Report Form for Skin Reactions Due to Medical Devices for Diabetes Management. Journal of Diabetes Science and Technology, 2021, 15, 193229682091110.	1.3	10

#	Article	IF	CITATIONS
91	Intermittent Use of Continuous Glucose Monitoring: Expanding the Clinical Value of CGM. Journal of Diabetes Science and Technology, 2021, 15, 684-694.	1.3	10
92	Identification of diurnal patterns in insulin action from measured CGM data for patients with T1DM. , 2015, , .		9
93	Deviation analysis of clinical studies as tool to tune and assess performance of diabetes control algorithms. , 2016, , .		9
94	Occlusion Detection Time in Insulin Pumps at Two Different Basal Rates. Journal of Diabetes Science and Technology, 2018, 12, 608-613.	1.3	9
95	Impact of Carbohydrate Counting Errors on Glycemic Control in Type 1 Diabetes. IFAC-PapersOnLine, 2018, 51, 186-191.	0.5	9
96	Evaluation of the Accuracy of Current Tubeless Pumps for Continuous Subcutaneous Insulin Infusion. Diabetes Technology and Therapeutics, 2021, 23, 350-357.	2.4	9
97	Self-Monitoring of Blood Glucose as an Integral Part in the Management of People with Type 2 Diabetes Mellitus. Diabetes Therapy, 2022, 13, 829-846.	1.2	9
98	Performance assessment of estimation methods for CIR/ISF in bolus calculatorsâ^—â^—This work has been supported by the Linz Center of Mechatronics (LCM) in the framework of the Austrian COMET-K2 program. IFAC-PapersOnLine, 2015, 48, 231-236.	0.5	8
99	Integrated Self-Monitoring of Blood Clucose System: Handling Step Analysis. Journal of Diabetes Science and Technology, 2012, 6, 938-946.	1.3	7
100	System Accuracy and User Performance Evaluation of an Improved System for Self-Monitoring of Blood Glucose. Journal of Diabetes Science and Technology, 2018, 12, 407-411.	1.3	7
101	Practical Recommendations for Glucose Measurement, Glucose Monitoring and Glucose Control in Patients with Type 1 or Type 2 Diabetes in Germany. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 411-428.	0.6	7
102	Impact of Two Different Reference Measurement Procedures on Apparent System Accuracy of 18 CE-Marked Current-Generation Blood Glucose Monitoring Systems. Journal of Diabetes Science and Technology, 2022, 16, 1076-1088.	1.3	7
103	Mean Absolute Relative Difference of Blood Glucose Monitoring Systems and Relationship to ISO 15197. Journal of Diabetes Science and Technology, 2022, 16, 1089-1095.	1.3	7
104	Feasibility of Overnight Closed-Loop Control Based on Hourly Blood Glucose Measurements. Journal of Diabetes Science and Technology, 2012, 6, 902-909.	1.3	6
105	Self-Monitoring of Blood Glucose. Diabetes Technology and Therapeutics, 2016, 18, S-3-S-9.	2.4	6
106	Identification of CGM Time Delays and Implications for BG Control in T1DM. IFMBE Proceedings, 2016, , 190-195.	0.2	6
107	Comment on "The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System―by Bailey et al Diabetes Technology and Therapeutics, 2016, 18, 334-335.	2.4	6
108	Performance of two updated blood glucose monitoring systems: an evaluation following ISO 15197:2013. Current Medical Research and Opinion, 2016, 32, 847-855.	0.9	6

#	Article	IF	CITATIONS
109	The Rectangle Target Plot. Journal of Diabetes Science and Technology, 2016, 10, 343-349.	1.3	6
110	Bolus Calculator Safety Mandates a Need for Standards. Journal of Diabetes Science and Technology, 2017, 11, 3-6.	1.3	6
111	Introduction of a Novel Smartphone-Coupled Blood Glucose Monitoring System. Journal of Diabetes Science and Technology, 2017, 11, 1231-1233.	1.3	6
112	Accuracy of five systems for self-monitoring of blood glucose in the hands of adult lay-users and professionals applying ISO 15197:2013 accuracy criteria and potential insulin dosing errors. Current Medical Research and Opinion, 2019, 35, 301-311.	0.9	6
113	Proof of Concept Study to Assess the Influence of Oxygen Partial Pressure in Capillary Blood on SMBG Measurements. Journal of Diabetes Science and Technology, 2019, 13, 1105-1111.	1.3	6
114	Concept and Implementation of a Novel Patch Pump for Insulin Delivery. Journal of Diabetes Science and Technology, 2020, 14, 324-327.	1.3	6
115	Self-Monitoring of Blood Glucose. Journal of Diabetes Science and Technology, 2014, 8, 1239-1240.	1.3	5
116	Accuracy Assessment of an Advanced Blood Glucose Monitoring System for Self-Testing With Three Reagent System Lots Following ISO 15197:2013. Journal of Diabetes Science and Technology, 2014, 8, 1241-1242.	1.3	5
117	Accuracy Evaluation of Three Systems for Self-monitoring of Blood Clucose With Three Different Test Strip Lots Following ISO 15197. Journal of Diabetes Science and Technology, 2014, 8, 422-424.	1.3	5
118	Glucose Measurement and Control in Patients with Type 1 or Type 2 Diabetes. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, S8-S26.	0.6	5
119	Measurement accuracy of two professional-use systems for point-of-care testing of blood glucose. Clinical Chemistry and Laboratory Medicine, 2020, 58, 445-455.	1.4	5
120	Therapy adjustments in people with type 1 diabetes with impaired hypoglycemia awareness on multiple daily injections using real-time continuous glucose monitoring: a mechanistic analysis of the HypoDE study. BMJ Open Diabetes Research and Care, 2021, 9, e001848.	1.2	5
121	Patch Pumps: What are the advantages for people with diabetes?. Diabetes Research and Clinical Practice, 2022, 187, 109858.	1.1	5
122	Use of Microdialysis-Based Continuous Glucose Monitoring to Drive Real-Time Semi-Closed-Loop Insulin Infusion. Journal of Diabetes Science and Technology, 2014, 8, 1074-1080.	1.3	4
123	Strengths and Limitations of New Approaches for Graphical Presentation of Blood Glucose Monitoring System Accuracy Data. Journal of Diabetes Science and Technology, 2017, 11, 1226-1230.	1.3	4
124	Replacement of Blood Glucose Measurements by Measurements With Systems for Real-Time Continuous Glucose Monitoring (rtCGM) or CGM With Intermittent Scanning (iscCGM): A German View. Journal of Diabetes Science and Technology, 2017, 11, 653-656.	1.3	4
125	Definition, classification and diagnostics of diabetes mellitus. Laboratoriums Medizin, 2018, 42, 73-79.	0.1	4
126	First User Experiences With a Novel Touchscreen-Based Insulin Pump System in Daily Life of Patients With Type 1 Diabetes Experienced in Insulin Pump Therapy. Journal of Diabetes Science and Technology, 2019, 13, 96-102.	1.3	4

#	Article	IF	CITATIONS
127	Evaluation of Analytical Performance of Three Blood Glucose Monitoring Systems: System Accuracy, Measurement Repeatability, and Intermediate Measurement Precision. Journal of Diabetes Science and Technology, 2019, 13, 111-117.	1.3	4
128	Preulcerous Risk Situation in Diabetic Foot Syndrome: Proposal for a Simple Ulcer Prevention Score. Journal of Diabetes Science and Technology, 2020, 15, 193229682092259.	1.3	4
129	Impact of Blood Glucose Monitoring System Accuracy on Clinical Decision Making for Diabetes Management. Journal of Diabetes Science and Technology, 2023, 17, 683-689.	1.3	4
130	The Clinical Research Tool: A High-Performance Microdialysis-Based System for Reliably Measuring Interstitial Fluid Glucose Concentration. Journal of Diabetes Science and Technology, 2009, 3, 468-477.	1.3	3
131	ISO 15197:2013 Accuracy Evaluation of Two CE-Marked Systems for Self-Monitoring of Blood Glucose. Journal of Diabetes Science and Technology, 2015, 9, 934-935.	1.3	3
132	Accuracy Evaluation of an Integrated Blood Glucose Monitoring System With Improved Test Cassettes Following ISO 15197:2013. Journal of Diabetes Science and Technology, 2016, 10, 242-244.	1.3	3
133	Accuracy of BG Meters and CGM Systems: Possible Influence Factors for the Glucose Prediction Based on Tissue Glucose Concentrations. Lecture Notes in Bioengineering, 2016, , 31-42.	0.3	3
134	Accuracy Evaluation of a New System for Self-Monitoring of Blood Glucose With Three Test Strip Lots Based on ISO 15197:2013. Journal of Diabetes Science and Technology, 2018, 12, 539-540.	1.3	3
135	Continuous glucose monitoring: data management and evaluation by patients and health care professionals – current situation and developments. Laboratoriums Medizin, 2018, 42, 225-233.	0.1	3
136	Stability of Glucose Concentrations in Frozen Plasma. Journal of Diabetes Science and Technology, 2020, , 193229682096365.	1.3	3
137	Evaluation of Trueness and Precision of a Bench-Top Laboratory Glucose Analyzer Using Reference Materials. Journal of Diabetes Science and Technology, 2022, 16, 751-755.	1.3	3
138	119-LB: Bolus Dosing Accuracy of Two Recent Insulin Pumps. Diabetes, 2019, 68, 119-LB.	0.3	3
139	The Circadian Study:: The Get-Up Phenomenon in Type 1 Diabetes. Diabetes Care, 2008, 31, e85-e85.	4.3	2
140	In Response to Teodorczyk and Coauthors: System Accuracy of Blood Glucose Monitoring Devices According to the Current and Proposed ISO 15197 Standards. Journal of Diabetes Science and Technology, 2013, 7, 1659-1660.	1.3	2
141	LMI-based online estimation of a time-varying time-delay in continuous glucose measurement devices. , 2014, , .		2
142	Aktualisierte Anforderungen an die MessqualitĤund QualitĤsicherung (QS) von Point-of-Care-Testing (POCT)-Blutglukose-Messsystemen mit Unit-use Reagenzien, die für die Erstdiagnostik eines manifesten Diabetes in der Schwangerschaft oder eines Gestationsdiabetes mellitus (GDM) gemäŸ der GDM-Leitlinie der Deutschen Diabetes-Gesellschaft (DDG) geeignet sind. Laboratoriums Medizin, 2015, 39.	0.1	2
143	Identification of Mixed-Meal Effects on Insulin Needs and Glycemic Control. IFAC-PapersOnLine, 2018, 51, 419-424.	0.5	2
144	Assessment of System Accuracy, Intermediate Measurement Precision, and Measurement Repeatability of a Blood Glucose Monitoring System Based on ISO 15197. Journal of Diabetes Science and Technology, 2019, 13, 235-241.	1.3	2

#	Article	IF	CITATIONS
145	Accuracy Assessment of an Improved Version of an Established Blood Glucose Monitoring System for Self-Testing Following ISO 15197:2013. Journal of Diabetes Science and Technology, 2017, 11, 851-853.	1.3	1
146	Comparative Handling Analysis of Different Insulin Pump Systems. Journal of Diabetes Science and Technology, 2018, 12, 401-406.	1.3	1
147	Evaluation of Hematocrit Influence on Measurements With a Novel Self-Monitoring of Blood Glucose System Based on ISO 15197:2013. Journal of Diabetes Science and Technology, 2018, 12, 1078-1079.	1.3	1
148	Can We Use Measurements to Classify Patients Suffering from Type 1 Diabetes into Subcategories and Does It Make Sense?. Lecture Notes in Bioengineering, 2016, , 57-78.	0.3	1
149	HbA1c-POC-Systeme zur Therapiekontrolle und Diagnostik des Diabetes: Ausreichende Qualitäund Qualitäskontrolle?. Laboratoriums Medizin, 2017, 41, .	0.1	1
150	Real-Time Continuous Glucose Monitoring Can Predict Severe Hypoglycemia in People with Type 1 Diabetes: Combined Analysis of the HypoDE and DIAMOND Trials. Diabetes Technology and Therapeutics, 2022, 24, 603-610.	2.4	1
151	Model of the glucose-insulin system of type-1 diabetics and optimization-based bolus calculation. , 2014, , .		0
152	Comment on ï;½accuracy and precision of four main glucometers used in a sub-Saharan African country: a cross-sectional studyï;½ by Choukem et al. Pan African Medical Journal, 2019, 33, 271.	0.3	0
153	Description of a Novel Patch Pump for Insulin Delivery and Comparative Accuracy Evaluation. Journal of Diabetes Science and Technology, 2021, , 193229682110004.	1.3	0
154	Comment on "Do We Need the Replacement of YSI 2300? A View from the Clinical Laboratory―by Spanou and Makris. Journal of Diabetes Science and Technology, 2021, , 193229682110142.	1.3	0
155	Response to Seibold: Data Obtained With Early Generations of CGM Sensors: Comment on Pleus et al Journal of Diabetes Science and Technology, 2021, , 193229682110372.	1.3	0
156	Basal Rate Delivery of Different Insulin Pumps—An Accuracy Evaluation. Diabetes, 2018, 67, .	0.3	0
157	Delivery of Low Basal Rates in Different Insulin Pumps—An Accuracy Evaluation. Diabetes, 2018, 67, 972-P.	0.3	0
158	Predictors of Hypoglycemia Avoidance in a Randomized Controlled rtCGM Trial (HypoDE). Diabetes, 2018, 67, .	0.3	0
159	The Relationship between A1C and Hypoglycemia in the HypoDE Study. Diabetes, 2018, 67, 9-LB.	0.3	0
160	279-OR: How to Use rtCGM Data to Predict Future Severe Hypoglycemia?. Diabetes, 2019, 68, .	0.3	0
161	Evaluation of the Accuracy and Reliability of a Tubeless Insulin Infusion System Under Laboratory Conditions. Journal of Diabetes Science and Technology, 2022, , 193229682110708.	1.3	0
162	Patch Pumps: Periodic Insulin Delivery Patterns. Journal of Diabetes Science and Technology, 2022, , 193229682210918.	1.3	0

#	Article	IF	CITATIONS
163	Accuracy Evaluation of a Novel Reusable Patch Pump Prototype. Journal of Diabetes Science and Technology, 0, , 193229682210979.	1.3	0