Josep Maria Tomà s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2588954/publications.pdf

Version: 2024-02-01

40 papers

1,041 citations

20 h-index 31 g-index

40 all docs 40 docs citations

40 times ranked

710 citing authors

#	Article	IF	CITATIONS
1	Involvement of the Voltage-Gated Calcium Channels L- P/Q- and N-Types in Synapse Elimination During Neuromuscular Junction Development. Molecular Neurobiology, 2022, 59, 4044-4064.	4.0	3
2	Running and Swimming Differently Adapt the BDNF/TrkB Pathway to a Slow Molecular Pattern at the NMJ. International Journal of Molecular Sciences, 2021, 22, 4577.	4.1	5
3	M 1 and M 2 mAChRs activate PDK1 and regulate PKC \hat{I}^2I and $\hat{I}\mu$ and the exocytotic apparatus at the NMJ. FASEB Journal, 2021, 35, e21724.	0.5	5
4	PKA and PKC Balance in Synapse Elimination during Neuromuscular Junction Development. Cells, 2021, 10, 1384.	4.1	3
5	Running and swimming prevent the deregulation of the BDNF/TrkB neurotrophic signalling at the neuromuscular junction in mice with amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 2020, 77, 3027-3040.	5.4	27
6	The M ₂ muscarinic receptor, in association to M ₁ , regulates the neuromuscular PKA molecular dynamics. FASEB Journal, 2020, 34, 4934-4955.	0.5	10
7	Overview of Impaired BDNF Signaling, Their Coupled Downstream Serine-Threonine Kinases and SNARE/SM Complex in the Neuromuscular Junction of the Amyotrophic Lateral Sclerosis Model SOD1-G93A Mice. Molecular Neurobiology, 2019, 56, 6856-6872.	4.0	21
8	Opposed Actions of PKA Isozymes (RI and RII) and PKC Isoforms (cPKCβI and nPKCÎμ) in Neuromuscular Developmental Synapse Elimination. Cells, 2019, 8, 1304.	4.1	6
9	The Impact of Kinases in Amyotrophic Lateral Sclerosis at the Neuromuscular Synapse: Insights into BDNF/TrkB and PKC Signaling. Cells, 2019, 8, 1578.	4.1	34
10	nPKCε Mediates SNAP-25 Phosphorylation of Ser-187 in Basal Conditions and After Synaptic Activity at the Neuromuscular Junction. Molecular Neurobiology, 2019, 56, 5346-5364.	4.0	12
11	Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways. Frontiers in Pharmacology, 2018, 9, 397.	3.5	15
12	BDNF-TrkB Signaling Coupled to nPKC $\hat{l}\mu$ and cPKC \hat{l}^2 I Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction. Frontiers in Molecular Neuroscience, 2018, 11, 207.	2.9	22
13	Presynaptic Muscarinic Acetylcholine Receptors and TrkB Receptor Cooperate in the Elimination of Redundant Motor Nerve Terminals during Development. Frontiers in Aging Neuroscience, 2017, 9, 24.	3.4	18
14	Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development. Frontiers in Molecular Neuroscience, 2017, 10, 132.	2.9	23
15	Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCl± and cPKCl²l. Frontiers in Molecular Neuroscience, 2017, 10, 147.	2.9	62
16	Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction. Frontiers in Molecular Neuroscience, 2017, 10, 270.	2.9	14
17	Synergistic Action of Presynaptic Muscarinic Acetylcholine Receptors and Adenosine Receptors in Developmental Axonal Competition at the Neuromuscular Junction. Developmental Neuroscience, 2016, 38, 407-419.	2.0	12
18	Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction. Molecular Brain, 2016, 9, 67.	2.6	36

#	Article	IF	CITATIONS
19	The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Molecular Brain, 2015, 8, 80.	2.6	22
20	The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release. Molecular Brain, 2015, 8, 8.	2.6	27
21	Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse. Journal of Neuroscience Research, 2014, 92, 543-554.	2.9	41
22	Protein kinase <scp>C</scp> isoforms at the neuromuscular junction: localization and specific roles in neurotransmission and development. Journal of Anatomy, 2014, 224, 61-73.	1.5	24
23	The interaction between tropomyosin-related kinase B receptors and serine kinases modulates acetylcholine release in adult neuromuscular junctions. Neuroscience Letters, 2014, 561, 171-175.	2.1	20
24	Adenosine A ₁ and A _{2A} receptorâ€mediated modulation of acetylcholine release in the mice neuromuscular junction. European Journal of Neuroscience, 2013, 38, 2229-2241.	2.6	33
25	Silent synapses in neuromuscular junction development. Journal of Neuroscience Research, 2011, 89, 3-12.	2.9	15
26	Blocking p75 ^{NTR} receptors alters polyinnervationz of neuromuscular synapses during development. Journal of Neuroscience Research, 2011, 89, 1331-1341.	2.9	18
27	Synaptic activityâ€related classical protein kinase C isoform localization in the adult rat neuromuscular synapse. Journal of Comparative Neurology, 2010, 518, 211-228.	1.6	30
28	Localization of brainâ€derived neurotrophic factor, neurotrophinâ€4, tropomyosinâ€related kinase b receptor, and p75 ^{NTR} receptor by highâ€resolution immunohistochemistry on the adult mouse neuromuscular junction. Journal of the Peripheral Nervous System, 2010, 15, 40-49.	3.1	45
29	The Interaction between Tropomyosin-Related Kinase B Receptors and Presynaptic Muscarinic Receptors Modulates Transmitter Release in Adult Rodent Motor Nerve Terminals. Journal of Neuroscience, 2010, 30, 16514-16522.	3.6	51
30	Involvement of neurotrophin-3 (NT-3) in the functional elimination of synaptic contacts during neuromuscular development. Neuroscience Letters, 2010, 473, 141-145.	2.1	12
31	Decreased phosphorylation of delta and epsilon subunits of the acetylcholine receptor coincides with delayed postsynaptic maturation in PKC theta deficient mouse. Experimental Neurology, 2010, 225, 183-195.	4.1	20
32	Plastic-embedded semithin cross-sections as a tool for high-resolution immunofluorescence analysis of the neuromuscular junction molecules: Specific cellular location of protease-activated receptor-1. Journal of Neuroscience Research, 2007, 85, 748-756.	2.9	30
33	Muscarinic autoreceptors modulate transmitter release through protein kinase C and protein kinase A in the rat motor nerve terminal. European Journal of Neuroscience, 2006, 23, 2048-2056.	2.6	73
34	Phosphorylation of the nicotinic acetylcholine receptor in myotube-cholinergic neuron cocultures. Journal of Neuroscience Research, 2006, 83, 1407-1414.	2.9	18
35	Phosphorylation reactions in activity-dependent synapse modification at the neuromuscular junction during development. Journal of Neurocytology, 2003, 32, 803-816.	1.5	42
36	Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat. European Journal of Neuroscience, 2003, 17, 119-127.	2.6	74

#	Article	IF	CITATIONS
37	Pre- and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination depends on protein kinase C. Journal of Neuroscience Research, 2002, 67, 607-617.	2.9	50
38	Pertussis toxin-sensitive G-protein and protein kinase C activity are involved in normal synapse elimination in the neonatal rat muscle. Journal of Neuroscience Research, 2001, 63, 330-340.	2.9	53
39	Physiological activity-dependent ultrastructural plasticity in normal adult rat neuromuscular junctions. Biology of the Cell, 1997, 89, 19-28.	2.0	8
40	Activity-dependent plastic changes in the motor nerve terminals of the adult rat. Biology of the Cell, 1993, 79, 133-137.	2.0	7