List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2588861/publications.pdf Version: 2024-02-01

AVELLOPKE

#	Article	IF	CITATIONS
1	Optical emission from a charge-tunable quantum ring. Nature, 2000, 405, 926-929.	13.7	832
2	Spectroscopy of Nanoscopic Semiconductor Rings. Physical Review Letters, 2000, 84, 2223-2226.	2.9	765
3	Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Applied Physics Letters, 1997, 71, 2014-2016.	1.5	559
4	Epitaxially Self-Assembled Quantum Dots. Physics Today, 2001, 54, 46-52.	0.3	323
5	Coupling of quantum dots on GaAs. Physical Review Letters, 1990, 64, 2559-2562.	2.9	300
6	Shell structure and electron-electron interaction in self-assembled InAs quantum dots. Europhysics Letters, 1996, 36, 197-202.	0.7	248
7	Few-electron ground states of charge-tunable self-assembled quantum dots. Physical Review B, 1997, 56, 6764-6769.	1.1	233
8	Nonlinear Electron Transport in an Asymmetric Microjunction: A Ballistic Rectifier. Physical Review Letters, 1998, 80, 3831-3834.	2.9	208
9	Nanometer-Scale Resolution of Strain and Interdiffusion in Self-AssembledInAs/GaAsQuantum Dots. Physical Review Letters, 2000, 85, 1694-1697.	2.9	203
10	Electronic properties of freestanding Ti3C2Tx MXene monolayers. Applied Physics Letters, 2016, 108, .	1.5	171
11	Determination of strain fields and composition of self-organized quantum dots using x-ray diffraction. Physical Review B, 2001, 63, .	1.1	147
12	Initial stages of InAs epitaxy on vicinal GaAs(001)-(2×4). Physical Review B, 1994, 50, 8479-8487.	1.1	138
13	Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap. Journal of Applied Physics, 2007, 101, 103112.	1.1	138
14	Magnetotransport in two-dimensional lateral superlattices. Physical Review B, 1991, 44, 3447-3450.	1.1	136
15	Raman properties of silicon nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 155-158.	1.3	135
16	Island Scaling in Strained Heteroepitaxy: InAs/GaAs(001). Physical Review Letters, 1995, 74, 3209-3212.	2.9	126
17	Wetting droplet instability and quantum ring formation. Physical Review E, 2002, 65, 021603.	0.8	104
18	The dynamics of tunneling into self-assembled InAs dots. Applied Physics Letters, 1999, 74, 2486-2488.	1.5	101

#	Article	IF	CITATIONS
19	Many-particle ground states and excitations in nanometer-size quantum structures. Physica B: Condensed Matter, 1998, 256-258, 424-430.	1.3	84
20	Excitons in self-assembled quantum ring-like structures. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 510-513.	1.3	82
21	Highly Luminescent ZnO Quantum Dots Made in a Nonthermal Plasma. Advanced Functional Materials, 2014, 24, 1988-1993.	7.8	80
22	Self-assembled conjugated polymer spheres as fluorescent microresonators. Scientific Reports, 2014, 4, 5902.	1.6	80
23	Far-infrared spectroscopy of nanoscopic InAs rings. Physical Review B, 2000, 62, 4573-4577.	1.1	76
24	Growth and Electronic Properties of Self-Organized Quantum Rings. Japanese Journal of Applied Physics, 2001, 40, 1857-1859.	0.8	74
25	Far-infrared and transport properties of antidot arrays with broken symmetry. Physica B: Condensed Matter, 1998, 249-251, 312-316.	1.3	72
26	Localization in GaAs electron-dots and anti-dots. Superlattices and Microstructures, 1991, 9, 103-106.	1.4	67
27	Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade. ACS Nano, 2016, 10, 7058-7063.	7.3	67
28	Electron-beam induced nano-etching of suspended graphene. Scientific Reports, 2015, 5, 7781.	1.6	62
29	Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition. Nano Letters, 2016, 16, 3367-3372.	4.5	60
30	Separately contacted edge states: A spectroscopic tool for the investigation of the quantum Hall effect. Physical Review B, 2002, 65, .	1.1	58
31	Nanostructured gas sensors and electrical characterization of deposited SnO2 nanoparticles in ambient gas atmosphere. Sensors and Actuators B: Chemical, 2005, 109, 13-18.	4.0	56
32	Coulomb-Interaction-Induced Incomplete Shell Filling in the Hole System of InAs Quantum Dots. Physical Review Letters, 2005, 94, 026808.	2.9	56
33	Single-chip fused hybrids for acousto-electric and acousto-optic applications. Applied Physics Letters, 1997, 70, 2097-2099.	1.5	53
34	Morphological transformation of InyGa1â^'yAs islands, fabricated by Stranski–Krastanov growth. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 225-229.	1.7	52
35	Conjugated Polymer Blend Microspheres for Efficient, Long-Range Light Energy Transfer. ACS Nano, 2016, 10, 5543-5549.	7.3	46
36	Whispering Gallery Resonance from Self-Assembled Microspheres of Highly Fluorescent Isolated Conjugated Polymers. Macromolecules, 2015, 48, 3928-3933.	2.2	45

#	Article	IF	CITATIONS
37	Shape, size, strain and correlations in quantum dot systems studied by grazing incidence X-ray scattering methods. Thin Solid Films, 1998, 336, 1-8.	0.8	44
38	Interdependence of strain and shape in self-assembled coherent InAs islands on GaAs. Europhysics Letters, 1999, 45, 222-227.	0.7	44
39	Growth and characterisation of GaAs/InGaAs/GaAs nanowhiskers on (111) GaAs. Journal of Crystal Growth, 2007, 298, 607-611.	0.7	44
40	Surface oxidation of monodisperse SnOx nanoparticles. Sensors and Actuators B: Chemical, 2003, 88, 281-285.	4.0	43
41	Magnetocapacitance probing of the many-particle states in InAs dots. Applied Physics Letters, 2005, 86, 092104. Experimental imaging and atomistic modeling of electron and hole quasiparticle wave functions	1.5	43
42	in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="normal">In</mml:mi><mml:mi mathvariant="normal">As<mml:mo>â^•</mml:mo><mml:mi mathvariant="normal">Ga<mml:mi< td=""><td>1.1</td><td>42</td></mml:mi<></mml:mi </mml:mi </mml:mrow></mml:math>	1.1	42
43	mathvariant="normal">Asquantum dots. Physical Review B, 2007, 7 Graphene on insulating crystalline substrates. Nanotechnology, 2009, 20, 155601.	1.3	42
44	Optical Detection of Single-Electron Tunneling into a Semiconductor Quantum Dot. Physical Review Letters, 2019, 122, 247403.	2.9	42
45	Rendering Ti ₃ C ₂ T <i>_x</i> (MXene) monolayers visible. Materials Research Letters, 2017, 5, 322-328.	4.1	41
46	Using a two-dimensional electron gas to study nonequilibrium tunneling dynamics and charge storage in self-assembled quantum dots. Applied Physics Letters, 2009, 95, 022113.	1.5	37
47	Infrared properties of silicon nanoparticles. Journal of Applied Physics, 2005, 97, 084306.	1.1	34
48	Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High‥ield Synthetic Fuel Production. Angewandte Chemie - International Edition, 2017, 56, 11480-11484.	7.2	34
49	Curved two-dimensional electron gases. Superlattices and Microstructures, 2003, 33, 347-356.	1.4	33
50	Rectification in Mesoscopic Systems with Broken Symmetry: Quasiclassical Ballistic Versus Classical Transport. Physical Review Letters, 2004, 92, 056806.	2.9	33
51	Two relaxation mechanisms observed in transport between spin-split edge states at high imbalance. Physical Review B, 2004, 69, .	1.1	29
52	Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots. Nature Communications, 2011, 2, 209.	5.8	28
53	Far-infrared response of lateral superlattices in high magnetic fields. Physical Review B, 1992, 46, 12845-12848.	1.1	27
54	Optical emission from single, charge-tunable quantum rings. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 9, 124-130.	1.3	27

#	Article	IF	CITATIONS
55	Role of quantum capacitance in coupled low-dimensional electron systems. Physical Review B, 2006, 73,	1.1	27
56	Step bunching and step equalization on vicinal GaAs(001) surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 2689.	1.6	26
57	Electronic coupling effects in self-assembled InAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 704-708.	1.3	26
58	Adiabatic pumping of two-dimensional electrons in a ratchet-type lateral superlattice. Applied Physics Letters, 2001, 78, 2905-2907.	1.5	26
59	Vibrational and defect states in SnOx nanoparticles. Journal of Applied Physics, 2006, 99, 113108.	1.1	26
60	"Artificial Atoms―in Magnetic Fields: Wave-Function Shaping and Phase-Sensitive Tunneling. Physical Review Letters, 2010, 105, 176804.	2.9	25
61	Asymmetry of charge relaxation times in quantum dots: The influence of degeneracy. Europhysics Letters, 2014, 106, 47002.	0.7	25
62	Nanolithography with an atomic force microscope. Superlattices and Microstructures, 1996, 20, 349-356.	1.4	24
63	Electronic structure of nanometer-size quantum dots and quantum rings. Microelectronic Engineering, 1999, 47, 95-99.	1.1	24
64	XeF ₂ gas-assisted focused-electron-beam-induced etching of GaAs with 30 nm resolution. Nanotechnology, 2011, 22, 045301.	1.3	24
65	Static and dynamic conductivity of lateral superlattices. Surface Science, 1992, 263, 307-313.	0.8	23
66	Local far-infrared spectroscopy of edge states in the quantum Hall regime. Physical Review B, 1996, 53, 1054-1057.	1.1	23
67	Mobility and carrier density in nanoporous indium tin oxide films. Physical Review B, 2011, 83, .	1.1	23
68	Subband spectroscopy of single and coupled GaAs quantum wells. Physical Review B, 1990, 42, 1321-1325.	1.1	22
69	Molecular-beam epitaxial growth mechanisms of (Al,Ga)As on vicinal GaAs surfaces: Self-organization and step bunching. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1993, 11, 1384.	1.6	22
70	Parallel quantum-point-contacts as high-frequency-mixers. Applied Physics Letters, 1997, 70, 3251-3253.	1.5	22
71	Coupling between LO phonons and electronic excitations of quantum dots. Physical Review B, 1997, 56, 1516-1519.	1.1	22
72	Size Quantization and Zero Dimensional Effects in Self Assembled Semiconductor Quantum Dots. Japanese Journal of Applied Physics, 1997, 36, 4068-4072.	0.8	22

#	Article	IF	CITATIONS
73	Coulomb-coupling in vertically aligned self-assembled InAs quantum dots. Nanotechnology, 1999, 10, 14-18.	1.3	22
74	Manipulation of Electronic Transport in the Bi(111) Surface State. Physical Review Letters, 2012, 108, 266804.	2.9	22
75	Role of the ligand layer for photoluminescence spectral diffusion of CdSe/ZnS nanoparticles. Physical Review B, 2013, 88, .	1.1	22
76	A nonlinear transport device with no intrinsic threshold. Superlattices and Microstructures, 1999, 25, 269-272.	1.4	21
77	Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition. Journal of Applied Physics, 2007, 102, 124305.	1.1	21
78	Optical Blocking of Electron Tunneling into a Single Self-Assembled Quantum Dot. Physical Review Letters, 2016, 117, 017401.	2.9	21
79	Singleâ€Crystalline Optical Microcavities from Luminescent Dendrimers. Angewandte Chemie - International Edition, 2020, 59, 12674-12679.	7.2	21
80	Control of electron population by intersubband optical excitation in potentialâ€inserted double quantum well structures. Applied Physics Letters, 1994, 65, 424-426.	1.5	19
81	Effect of in-flight annealing and deposition method on gas-sensitive SnOx films made from size-selected nanoparticles. Sensors and Actuators B: Chemical, 2005, 108, 62-69.	4.0	19
82	Electrical Readout of the Local Nuclear Polarization in the Quantum Hall Effect: A Hyperfine Battery. Physical Review Letters, 2005, 95, 056802.	2.9	19
83	Experimental realization of a Fabry-Perot-type interferometer by copropagating edge states in the quantum Hall regime. Physical Review B, 2008, 77, .	1.1	18
84	Probing the band structure of InAsâ^•GaAs quantum dots by capacitance-voltage and photoluminescence spectroscopy. Applied Physics Letters, 2008, 92, 193111.	1.5	18
85	Quantum confinement in EuO heterostructures. Applied Physics Letters, 2016, 109, .	1.5	18
86	Irradiation of graphene field effect transistors with highly charged ions. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 71-75.	0.6	18
87	Electronic structure of self-assembled InGaAs/GaAs quantum rings studied by capacitance-voltage spectroscopy. Applied Physics Letters, 2010, 96, .	1.5	17
88	Analog Sauter-Schwinger effect in semiconductors for spacetime-dependent fields. Physical Review B, 2018, 97, .	1.1	17
89	Energy Transport by Neutral Collective Excitations at the Quantum Hall Edge. Physical Review Letters, 2011, 106, 256802.	2.9	16
90	Optically induced mode splitting in self-assembled, high quality-factor conjugated polymer microcavities. Scientific Reports, 2016, 6, 19635.	1.6	16

#	Article	IF	CITATIONS
91	Tunable carrier density and high mobility of two-dimensional hole gases on diamond: The role of oxygen adsorption and surface roughness. Diamond and Related Materials, 2019, 97, 107450.	1.8	16
92	Wave-form sampling using a driven electron ratchet in a two-dimensional electron system. Applied Physics Letters, 2005, 87, 042104.	1.5	15
93	Morphology, structure and electrical properties of iron nanochains. Nanotechnology, 2006, 17, 3111-3115.	1.3	15
94	Quantum size effect of valence band plasmon energies in Si and SnO[sub x] nanoparticles. Journal of Vacuum Science & Technology B, 2006, 24, 1156.	1.3	15
95	Time-resolved high-temperature detection with single charge resolution of holes tunneling into many-particle quantum dot states. Physical Review B, 2011, 84, .	1.1	15
96	Magnetotransport along a boundary: from coherent electron focusing to edge channel transport. New Journal of Physics, 2013, 15, 113047.	1.2	15
97	Van der Waals epitaxial MOCVD-growth of (Bi _{<i>x</i>} 1â^` <i>x</i>) ₂ Te ₃ (0 < <i>x</i> < 1) films. Semiconductor Science and Technology, 2015, 30, 085021.	1.0	15
98	Photoelectron generation and capture in the resonance fluorescence of a quantum dot. Applied Physics Letters, 2016, 108, .	1.5	15
99	Quantum dot electrons as controllable scattering centers in the vicinity of a two-dimensional electron gas. Phase Transitions, 2006, 79, 765-770.	0.6	14
100	Equilibration between edge states in the fractional quantum Hall effect regime at high imbalances. Physical Review B, 2006, 74, .	1.1	14
101	Quantum Hall Mach-Zehnder interferometer far beyond equilibrium. Physical Review B, 2011, 84, .	1.1	14
102	Structural and thermoelectrical characterization of epitaxial Sb ₂ Te ₃ high quality thin films grown by thermal evaporation. Semiconductor Science and Technology, 2018, 33, 105002.	1.0	14
103	Real-Time Detection of Single Auger Recombination Events in a Self-Assembled Quantum Dot. Nano Letters, 2020, 20, 1631-1636.	4.5	14
104	Self-organized lateral superlattice formation by vertical exchange reactions. Surface Science, 1994, 304, L493-L499.	0.8	13
105	Role of steps in epitaxial growth. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 30, 121-125.	1.7	13
106	Temperature-induced crossover between bright and dark exciton emission in silicon nanoparticles. Europhysics Letters, 2007, 79, 37002.	0.7	13
107	The influence of charged InAs quantum dots on the conductance of a two-dimensional electron gas: Mobility vs. carrier concentration. Applied Physics Letters, 2011, 99, .	1.5	13
108	3 ns single-shot read-out in a quantum dot-based memory structure. Applied Physics Letters, 2014, 104, 053111.	1.5	13

#	Article	IF	CITATIONS
109	The influence of different pre-treatments of current collectors and variation of the binders on the performance of Li4Ti5O12 anodes for lithium ion batteries. Journal of Applied Electrochemistry, 2015, 45, 1043-1055.	1.5	13
110	Tailoring of Bound Exciton Photoluminescence Emission in WS ₂ Monolayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900355.	1.2	13
111	Edge and bulk effects in Terahertz photoconductivity of an antidot superlattice. Physical Review B, 2001, 63, .	1.1	12
112	Quantized transport in ballistic rectifiers: sign reversal and step-like output. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 916-920.	1.3	12
113	Edge magnetotransport in graphene: A combined analytical and numerical study. Annalen Der Physik, 2015, 527, 723-736.	0.9	12
114	Pushing the Limits in Real-Time Measurements of Quantum Dynamics. Physical Review Letters, 2022, 128, 087701.	2.9	12
115	The field-effect-addressable potentiometric sensor/stimulator (FAPS)—a new concept for a surface potential sensor and stimulator with spatial resolution. Sensors and Actuators B: Chemical, 1999, 58, 497-504.	4.0	11
116	Mapping of the hole wave functions of self-assembled InAs-quantum dots by magneto-capacitance–voltage spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 159-162.	1.3	11
117	A Two-Dimensional Electron Gas as a Sensitive Detector for Time-Resolved Tunneling Measurements on Self-Assembled Quantum Dots. Nanoscale Research Letters, 2010, 5, 829-833.	3.1	11
118	Two-Dimensional Electron Transport and Scattering in Bi(111) Surface States. E-Journal of Surface Science and Nanotechnology, 2010, 8, 27-31.	0.1	11
119	Tuning quantum-dot based photonic devices with liquid crystals. Optics Express, 2010, 18, 7946.	1.7	11
120	Synthesis and Ink-Jet Printing of Highly Luminescing Silicon Nanoparticles for Printable Electronics. Journal of Nanoscience and Nanotechnology, 2011, 11, 5028-5033.	0.9	11
121	GaSb quantum dots on GaAs with high localization energy of 710 meV and an emission wavelength of 1.3 µm. Journal of Crystal Growth, 2014, 404, 48-53.	0.7	11
122	Fine structure in the spectrum of the few-electron ground states of self-assembled quantum dots. Physica B: Condensed Matter, 1998, 249-251, 257-261.	1.3	10
123	Topological defects in the edge-state structure in a bilayer electron system. Physical Review B, 2005, 72, .	1.1	10
124	Separately contacted edge states at high imbalance in the integer and fractional quantum Hall effect regime. Physica Status Solidi (B): Basic Research, 2008, 245, 366-377.	0.7	10
125	Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High‥ield Synthetic Fuel Production. Angewandte Chemie, 2017, 129, 11638-11642.	1.6	10
126	Breakdown of Shubnikov–de Haas oscillations in a short-period 1D lateral superlattice. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 561-564.	1.3	9

#	Article	IF	CITATIONS
127	Self-assembled quantum dots in a liquid-crystal-tunable microdisk resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2552-2555.	1.3	9
128	Control of molecular orientation and morphology in organic bilayer solar cells: Copper phthalocyanine on gold nanodots. Thin Solid Films, 2014, 562, 467-470.	0.8	9
129	Tuning the tunneling probability between low-dimensional electron systems by momentum matching. Applied Physics Letters, 2015, 106, .	1.5	9
130	Excitation of edge magnetoplasmons in a two-dimensional electron gas by inductive coupling. Applied Physics Letters, 1997, 71, 3655-3657.	1.5	8
131	Self-assembled quantum dots as probes for Landau-level spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 506-509.	1.3	8
132	Characterization of the field-effect addressable potentiometric sensor (FAPS). Sensors and Actuators B: Chemical, 2000, 68, 266-273.	4.0	7
133	Experimental Investigation of the Edge States Structure at Fractional Filling Factors. JETP Letters, 2005, 82, 539.	0.4	7
134	Momentum matching in the tunneling between 2-dimensional and 0-dimensional electron systems. Applied Physics Letters, 2012, 100, .	1.5	7
135	Time-resolved transconductance spectroscopy on self-assembled quantum dots: Spectral evolution from single- into many-particle states. Physical Review B, 2014, 89, .	1.1	7
136	Wave functions of elliptical quantum dots in a magnetic field. American Journal of Physics, 2015, 83, 205-209.	0.3	7
137	Enwrapping Conjugated Polymer Microspheres with Graphene Oxide Nanosheets. Chemistry Letters, 2016, 45, 1024-1026.	0.7	7
138	Giant magneto-photoelectric effect in suspended graphene. New Journal of Physics, 2017, 19, 063028.	1.2	7
139	Electron Transport in Antidot Superlattices. Springer Series in Solid-state Sciences, 1992, , 45-54.	0.3	6
140	Magnetotransport in lateral periodic potentials formed by surfaceâ€layerâ€induced modulation in InAsâ€AlSb quantum wells. Applied Physics Letters, 1993, 63, 2251-2253.	1.5	6
141	Tapered GaAs quantum wells and selectively contactable twoâ€dimensional electron gases grown by shadow masked molecularâ€beam epitaxy. Journal of Applied Physics, 1995, 77, 3578-3580.	1.1	6
142	Charging dynamics in vertically aligned InAs quantum dots. Materials Science and Technology, 2002, 18, 725-728.	0.8	6
143	A three-terminal planar selfgating device for nanoelectronic applications. Solid-State Electronics, 2005, 49, 1990-1995.	0.8	6
144	Screening effects in InAs quantum-dot structures observed by photoluminescence and capacitance-voltage spectra. Applied Physics Letters, 2005, 87, 163117.	1.5	6

#	Article	IF	CITATIONS
145	Magnetic-field-induced modification of the wave-functions in InAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1870-1872.	1.3	6
146	Interference effects in transport across a single incompressible strip at the edge of the fractional quantum Hall system. Physical Review B, 2009, 79, .	1.1	6
147	Transverse rectification in density-modulated two-dimensional electron gases. Physical Review B, 2012, 86, .	1.1	6
148	Electron dynamics in transport and optical measurements of selfâ€assembled quantum dots. Physica Status Solidi (B): Basic Research, 2017, 254, 1600625.	0.7	6
149	Laser―and Ionâ€Induced Defect Engineering in WS 2 Monolayers. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000466.	1.2	6
150	Quantum Sensor for Nanoscale Defect Characterization. Physical Review Applied, 2021, 15, .	1.5	6
151	Far-infrared spectroscopy of electrons in coupled double quantum wells. Superlattices and Microstructures, 1989, 5, 279-282.	1.4	5
152	Highly anharmonic potential modulation in lateral superlattices fabricated using epitaxial InGaAs stressors. Applied Physics Letters, 1998, 73, 1110-1112.	1.5	5
153	Ballistic magnetotransport in a semiconductor microjunction with broken symmetry. Superlattices and Microstructures, 1999, 25, 149-152.	1.4	5
154	Quantum dots as tunable scatterers for 2D- and 1D-electron systems. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2075-2077.	1.3	5
155	Electroluminescence from silicon nanoparticles fabricated from the gas phase. Nanotechnology, 2010, 21, 455201.	1.3	5
156	The effect of charged quantum dots on the mobility of a two-dimensional electron gas: How important is the Coulomb scattering?. Journal of Applied Physics, 2015, 117, 054305.	1.1	5
157	Charge storage in \hat{l}^2 -FeSi2 nanoparticles. Journal of Applied Physics, 2015, 117, 054303.	1.1	5
158	Stability of suspended monolayer graphene membranes in alkaline environment. Materials Research Letters, 2018, 6, 49-54.	4.1	5
159	Polychromatic Photoluminescence of Polymorph Boron Dipyrromethene Crystals and Heterostructures. Journal of Physical Chemistry C, 2019, 123, 5061-5066.	1.5	5
160	Singleâ€Crystalline Optical Microcavities from Luminescent Dendrimers. Angewandte Chemie, 2020, 132, 12774-12779.	1.6	5
161	Silicon Nanoparticles: Excitonic Fine Structure and Oscillator Strength. Advances in Solid State Physics, 2009, , 79-90.	0.8	5
162	Magnetotransport properties of arrays of cross-shaped antidots. Physical Review B, 1999, 60, 8845-8848.	1.1	4

#	Article	IF	CITATIONS
163	Evidence for the Luttigger liquid density of states in transport across the incompressible stripe at fractional filling factors. Europhysics Letters, 2007, 77, 37002.	0.7	4
164	High sensitivity far-infrared detection by resonant inter-Landau-level scattering. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1328-1331.	1.3	4
165	Manifestation of a complex edge excitation structure in the quantum Hall regime at high fractional filling factors. Physical Review B, 2008, 78, .	1.1	4
166	Local investigation of the energy gap within the incompressible strip in the quantum Hall regime. JETP Letters, 2010, 92, 67-70.	0.4	4
167	Electrical Transport in Semiconductor Nanoparticle Arrays: Conductivity, Sensing and Modeling. Nanoscience and Technology, 2012, , 231-271.	1.5	4
168	Charge-driven feedback loop in the resonance fluorescence of a single quantum dot. Physical Review B, 2017, 95, .	1.1	4
169	All-electrical measurement of the triplet-singlet spin relaxation time in self-assembled quantum dots. Applied Physics Letters, 2017, 111, .	1.5	4
170	Patterning of diamond with 10 nm resolution by electron-beam-induced etching. Nanotechnology, 2019, 30, 365302.	1.3	4
171	Quantum polyspectra for modeling and evaluating quantum transport measurements: A unifying approach to the strong and weak measurement regime. Physical Review Research, 2021, 3, .	1.3	4
172	Gate-controlled conductance oscillations in small one-dimensional electron cavities. Surface Science, 1992, 263, 428-432.	0.8	3
173	The Role of Vertical Exchange in the Growth of GaAs/AlAs Lateral and Vertical Superlattices. Materials Research Society Symposia Proceedings, 1993, 312, 65.	0.1	3
174	High-frequency conductivity of ion-beam-defined quantum wires with a self-aligned gate. Semiconductor Science and Technology, 1995, 10, 865-869.	1.0	3
175	Wave function mapping of self-assembled quantum dots by capacitance spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 516-520.	1.3	3
176	Separately contacted edge states in the fractional quantum Hall regime. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 177-180.	1.3	3
177	Terahertz photoresponse of a quantum Hall edge-channel diode. Physical Review B, 2009, 80, .	1.1	3
178	A two-dimensional electron gas as a sensitive detector to observe the charge carrier dynamics of self-assembled QDs. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2598-2601.	1.3	3
179	Thermoreflectance imaging of percolation effects and dynamic resistance in indium tin oxide nanoparticle layers. Journal of Applied Physics, 2012, 112, 083705.	1.1	3
180	Photon Noise Suppression by a Built-in Feedback Loop. Nano Letters, 2019, 19, 135-141.	4.5	3

#	Article	IF	CITATIONS
181	Internal photoeffect from a single quantum emitter. Physical Review B, 2021, 103, .	1.1	3
182	Transport properties of lateral superlattices grown on vicinal GaAs (100) surfaces. Solid-State Electronics, 1994, 37, 559-562.	0.8	2
183	Photon-assisted tunneling in coupled double quantum wells. Solid-State Electronics, 1996, 40, 421-424.	0.8	2
184	Manifestation of the bulk phase transition in the edge energy spectrum in a two-dimensional bilayer electron system. JETP Letters, 2004, 79, 171-176.	0.4	2
185	Hole and electron wave functions in self-assembled InAs quantum dots: a comparison. Physica Status Solidi (B): Basic Research, 2006, 243, 3942-3945.	0.7	2
186	Timeâ€resolved detection of manyâ€particle hole states in InAs/GaAs quantum dots using a twoâ€dimensional hole gas up to 77 K. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 243-246.	0.8	2
187	Contrast of 83% in reflection measurements on a single quantum dot. Scientific Reports, 2019, 9, 8817.	1.6	2
188	One-step synthesis of carbon-supported electrocatalysts. Beilstein Journal of Nanotechnology, 2020, 11, 1419-1431.	1.5	2
189	Defect spectroscopy on the dielectric material aluminum oxide. Scientific Reports, 2020, 10, 12533.	1.6	2
190	The effect of metal-oxide incorporation on the morphology of carbon nanostructures. Journal Physics D: Applied Physics, 2020, 53, 145206.	1.3	2
191	Boiling eggs, radiation damage, and the Arrhenius plot. Physics Today, 2021, 74, 66-67.	0.3	2
192	Growth and Spectroscopy of Semiconductor Quantum Rings. Nanoscience and Technology, 2014, , 27-59.	1.5	2
193	On the meandering of steps on vicinal GaAs (100) surfaces. Solid State Communications, 1995, 93, 861-864.	0.9	1
194	Charge pumping in driven electron ratchets. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 528-531.	1.3	1
195	Transport across the incompressible strip in the fractional quantum Hall effect regime. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1232-1234.	1.3	1
196	Electron energy structure of self-assembled In(Ga)As nanostructures probed by capacitance-voltage spectroscopy and one-dimensional numerical simulation. Journal of Materials Research, 2009, 24, 2179-2184.	1.2	1
197	A voltage-tunable in-plane diode in a two-dimensional-electron system. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1216-1219.	1.3	1
198	Optical Properties of Silicon Nanoparticles. Nanoscience and Technology, 2012, , 209-230.	1.5	1

#	Article	IF	CITATIONS
199	Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres. AIP Conference Proceedings, 2015, , .	0.3	1
200	Towards field-effect controlled graphene-enhanced Raman spectroscopy of cobalt octaethylporphyrin molecules. Nanotechnology, 2021, 32, 205702.	1.3	1
201	A monolithic, back-gated diamond field-effect transistor for tunable color centers. Diamond and Related Materials, 2021, 119, 108597.	1.8	1
202	Field-Effect Confined Electron Dots. Springer Series in Solid-state Sciences, 1990, , 29-38.	0.3	1
203	Electronic reconstruction and charge transfer in strained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:r double perovskite. Physical Review B, 2021, 104, .</mml:r </mml:msub></mml:mrow></mml:math 	nn×12⊾/mr	nl:mn>
204	Strain and Shape in Self-Assembled Quantum Dots Studied by X-Ray Grazing Incidence Diffraction. Materials Research Society Symposia Proceedings, 1998, 524, 89.	0.1	0
205	Coulomb blockade systems fabricated by atomic force microscopy. , O, , .		0
206	Emission from neutral and charged excitons in self-organized InAs quantum dots: Band bending vs Pauli blocking. AIP Conference Proceedings, 2005, , .	0.3	0
207	Magneto-Capacitance Imaging of Quasi-Particle Wave Functions in Quantum Dots. AlP Conference Proceedings, 2005, , .	0.3	0
208	Self Assembled Iron Nanowires: Morphology, Electrical and Magnetic Properties. Materials Research Society Symposia Proceedings, 2005, 877, 1.	0.1	0
209	Transverse ballistic rectification in density-modulated 2D-systems. , 2010, , .		0
210	THz-Photoconductivity of Quantum Hall Systems inÂQuasi-Corbino-Geometry. Journal of Low Temperature Physics, 2010, 159, 193-196.	0.6	0
211	Edge-induced magnetoplasmon excitation in a two-dimensional electron gas under quantum Hall conditions. Physical Review B, 2011, 84, .	1.1	0
212	All-electrical transport spectroscopy of non-equilibrium many-particle states in self-assembled quantum dots. AIP Conference Proceedings, 2011, , .	0.3	0
213	Publisher's Note: Role of the ligand layer for photoluminescence spectral diffusion of CdSe/ZnS nanoparticles [Phys. Rev. B88, 125302 (2013)]. Physical Review B, 2013, 88, .	1.1	0
214	Licht auf der Kreisbahn. Physik in Unserer Zeit, 2016, 47, 162-163.	0.0	0
215	Conductance quantization in an array of ballistic constrictions. Springer Proceedings in Physics, 2001, , 755-756.	0.1	0
216	A 2D Electron Gas for Studies on Tunneling Dynamics and Charge Storage in Self-assembled Quantum Dots. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 180-188.	0.2	0

#	Article	IF	CITATIONS
217	Control of Electron Population by Intersubband Optical Excitation in a novel Asymmetric Double Quantum Well Structure. , 1994, , 565-573.		0
218	The Role of Exchange Reactions and Strain in the Heteroepitaxy on Vicinal GaAs Surfaces. , 1995, , 139-150.		0